next up previous
Nächste Seite: Numerical tests Aufwärts: The new adaptive finite Vorherige Seite: A posteriori error estimation

Mesh refinement strategy

We describe the strategy used for local mesh refinement on the basis of the error estimators introduced above. By local averaging the values of the norm  |$ \sigma_{h}^{D}$ of the stress deviator are known in each vertex of the triangulation. We call a cell elastic, if  |$ \sigma_{h}^{}$| < $ \sigma_{0}^{}$  at each vertex, and plastic, if  |$ \sigma_{h}^{}$| = $ \sigma_{0}^{}$  at each vertex. The remaining cells represent the transition zone between elastic and plastic behaviour.

The mesh refinement process in each adaptive step is based on error bounds of the form

$\displaystyle \eta$ = $\displaystyle \sum_{K\in\mathbb T_h}^{}$$\displaystyle \eta_{K}^{}$    or    $\displaystyle \eta$ = $\displaystyle \Big($$\displaystyle \sum_{K\in\mathbb T_h}^{}$$\displaystyle \eta^{2}_{K}$$\displaystyle \Big)^{1/2}_{}$ .    

Our goal is to minimize the degree of equidistribution $ \cal {E}$ of the error indicators  $ \eta_{K}^{}$ , i.e., the ratio of  $ \max_{K}^{}${$ \eta_{K}^{}$ and  $ \min_{K}^{}${$ \eta_{K}^{}$, and, at the same time, to keep the total number of cells below a fixed (prescribed) number  Nmax . To this end, we use the following strategy:

Mesh adaptiation Strategy: The elements are ordered according to the size  $ \eta_{K}^{}$. A fixed portion (say 20%) of cells K with smallest contributions $ \eta_{K}^{}$ to the indicator value $ \eta$ is marked to be deleted. Then, we refine those cells with largest $ \eta_{K}^{}$, so that the desired number of cells  Nmax  is almost reached.


next up previous
Nächste Seite: Numerical tests Aufwärts: The new adaptive finite Vorherige Seite: A posteriori error estimation
sutti
2000-04-19