next up previous
Nächste Seite: A posteriori error estimation Aufwärts: Angewandte Methoden, Ergebnisse und Vorherige Seite: The Prandtl-Reuss and Hencky

The new adaptive finite element scheme

Our numerical scheme for solving the Prandtl-Reuss model in perfect plasticity (23) is based on the primal formulation (30) within an incremental loading process. In each load step a stationary Hencky-type problem is solved using an adaptive finite element discretization. The finite element meshes are optimized separately within each load step in accordance to the particular target functional  J( . leading to a dynamic development of refinement and coarsening over the whole calculation cycle.

We recall the notation for this framework. The space of admissible deformations is

V : = {$\displaystyle \varphi$ $\displaystyle \in$ H1($\displaystyle \Omega$)2,  $\displaystyle \varphi$|$\scriptstyle \Gamma_{u}$ = 0} .

Let  Vh $ \subset$ V  be finite element spaces as described above, i.e., the underlying meshes consisting of triangles or quadrilaterals are shape-regular, but may contain hanging nodes, and the shape functions are linear or (isoparametricly) bilinear. Simplifying notation, the domain $ \Omega$ is assumed to be polyhedral in order to ease the approximation of the boundary. More general situations may be treated by the usual modifications.

The loading process is started from the initial state  $ \sigma^{0}_{}$ $ \equiv$ 0. In each load step  tn - 1 $ \rightarrow$ tn , the nonlinear problem (30) has to be solved resulting in the following equation for the discrete deformation velocity  vnh $ \in$ Vh,

($\displaystyle \Pi$($\displaystyle \sigma^{n-1}_{h}$ + knC$\displaystyle \epsilon$(vnh)),$\displaystyle \epsilon$($\displaystyle \varphi$)) = (fn,$\displaystyle \varphi$) + (gn,$\displaystyle \varphi$)$\scriptstyle \Gamma_{\sigma}$    $\displaystyle \forall$$\displaystyle \varphi$ $\displaystyle \in$ Vh . (42)

From this, we obtain the stress update as

$\displaystyle \sigma^{n}_{h}$ : = $\displaystyle \Pi$($\displaystyle \sigma^{n-1}_{h}$ + knC$\displaystyle \epsilon$(vnh)) , (43)

where the projection $ \Pi$ is as defined above. Further, starting from the initial deformation u0h $ \equiv$ 0, we obtain corresponding approximate deformations as

unh : = un - 1h + knvnh .

Hence, (34) may be rewritten as

($\displaystyle \Pi$($\displaystyle \sigma^{n-1}_{h}$ + C$\displaystyle \epsilon$(unh - un - 1h)),$\displaystyle \epsilon$($\displaystyle \varphi$)) = (fn,$\displaystyle \varphi$) + (gn,$\displaystyle \varphi$)$\scriptstyle \Gamma_{\sigma}$    $\displaystyle \forall$$\displaystyle \varphi$ $\displaystyle \in$ Vh . (44)

From now on, we suppress the sub- and superscript n and consider Hencky-type problems of the form

($\displaystyle \Pi$($\displaystyle \hat{\sigma }$ + C$\displaystyle \epsilon$(uh - $\displaystyle \hat{u}$)),$\displaystyle \epsilon$($\displaystyle \varphi$)) = (f,$\displaystyle \varphi$) + (g,$\displaystyle \varphi$)$\scriptstyle \Gamma_{\sigma}$    $\displaystyle \forall$$\displaystyle \varphi$ $\displaystyle \in$ Vh , (45)

with given initial stress  $ \hat{\sigma }$  and deformation  $ \hat{u}$ . From (37), we obtain deformations  uh $ \in$ Vh  and associated stresses

 $\displaystyle \sigma_{h}^{}$ : = $\displaystyle \Pi$($\displaystyle \hat{\sigma }$ + C$\displaystyle \epsilon$(uh) - C$\displaystyle \hat{u}$) ,

approximating the solutions  u $ \in$ V  and $ \sigma$ $ \in$ $ \Pi$L2($ \Omega$)d x dsym  of the corresponding continuous problem

($\displaystyle \Pi$($\displaystyle \hat{\sigma }$ + C$\displaystyle \epsilon$(u - $\displaystyle \hat{u}$)),$\displaystyle \epsilon$($\displaystyle \varphi$)) = (f,$\displaystyle \varphi$) + (g,$\displaystyle \varphi$)$\scriptstyle \Gamma_{\sigma}$    $\displaystyle \forall$$\displaystyle \varphi$ $\displaystyle \in$ V . (46)

Clearly, for  $ \hat{\sigma }$ = 0  and  $ \hat{u}$ = 0, this reduces to the usual Hencky model (27).

Unterabschnitte
next up previous
Nächste Seite: A posteriori error estimation Aufwärts: Angewandte Methoden, Ergebnisse und Vorherige Seite: The Prandtl-Reuss and Hencky
sutti
2000-04-19