Aufgaben der nichtlinearen Optimierung treten in zahlreichen Anwendungen auf. Beispielhaft sei die nichtlineare Regression genannt, bei der ein parameterabhängiges physikalisch/technisches/ökonomisches System an einen gegebenen Datensatz angeglichen wird. Wir werden solche Aufgaben aus theoretischer wie numerischer Sicht untersuchen. Hinsichtlich der Theorie wird neben den Fragen der Existenz und Eindeutigkeit optimaler Lösungen vor allem die Herleitung von Optimalitätsbedingungen im Vordergrund stehen. Diese dienen als Basis zur Entwicklung numerischer Algorithmen, wie dem Gradienten-, Newton- und Quasi-Newton-Verfahren der freien Optimierung oder dem SQP-Verfahren der beschränkten Optimierung. Im Rahmen der Vorlesung und Übung werden derartige Algorithmen vorgestellt, analysiert und schließlich in Matlab implementiert und getestet.
Link zum Modulhandbuch Mathematik Link zum Moodle