Sprungmarken

Servicenavigation

TU Dortmund

Hauptnavigation


Bereichsnavigation

LS3-Logo

Nebeninhalt

Kontakt

Technische Universität Dortmund
Fakultät für Mathematik — Lehrstuhl 3 für Angewandte Mathematik
Vogelpothsweg 87
44227 Dortmund
Tel.: +49-(0)231-755-3076
Fax: +49-(0)231-755-5933
E-mail:

M. Sc. Hannes Ruelmann

M. Sc. Hannes Ruelmann
RaumM 1036
Telefon(0231) 755-3134
Telefax(0231) 755-5933
E-mail


Curriculum Vitae

06/2009-06/2011 Ausbildung zum Industriekaufmann
10/2011-11/2014 B.Sc. Studium der Technomathematik, Schwerpunkt Angewandte Mathematik und Numerik, Nebenfach Maschinenbau
11/2014-09/2017 M.Sc. Studium der Technomathematik, Schwerpunkt Angewandte Mathematik und Numerik, Nebenfach Maschinenbau
seit 10/2017 Promotion

Tätigkeiten am Lehrstuhl

  • Wissenschalftlicher Mitarbeiter (Forschung)
  • Programmierkurs
  • Computerorientiertes Problemlösen
  • Studienprojekte
  • Einführung in die Technomathematik
  • Simulationstechniken
  • Vizepräsident des 'LS3 coffee club'

Forschungsinteressen

  • Finite Elemente Methode
  • Machine Learning

Veröffentlichungen

Autoren Titel / Veranstaltung / Jahr Download
Ruelmann, H.; Geveler, M.; Ribbrock, D.; Zajac, P.; Turek, S. Basic Machine Learning Approaches for the Acceleration of PDE Simulations and Realization in the FEAT3 Software, Vermolen, F., Vuik, C., Lecture Notes in Computational Science and Engineering, 139, 449-457, Numerical Mathematics and Advanced Applications Enumath 2019, Springer, 2020 [BibTeX]
Ruelmann, H.; Geveler, M.; Ribbrock, D.; Zajac, P.; Turek, S. Basic Machine Learning Approaches for the Acceleration of PDE Simulations and Realization in the FEAT3 Software, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 618, Fakultät für Mathematik, TU Dortmund, 618, 2019 [BibTeX] [PDF]
Ruelmann, H.; Geveler, M.; Turek, S. On the prospects of using machine learning for the numerical simulation of PDEs: Training neural networks to assemble approximate inverses, Eccomas Newsletter, 27-32, 2018 [BibTeX]
Ruelmann, H.; Geveler, M.; Turek, S. On the Prospects of Using Machine Learning for the Numerical Simulation of PDEs: Training Neural Networks to Assemble Approximate Inverses, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 581, Fakultät für Mathematik, TU Dortmund, 581, 2018 [BibTeX] [PDF]
Geveler, M.; Ribbrock, D.; Donner, D.; Ruelmann, H.; Höppke, C.; Schneider, D.; Tomaschewski, D.; Turek, S. The ICARUS white paper: A scalable, energy-efficient, solar-powered HPC center based on low power GPUs, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 565, Fakultät für Mathematik, TU Dortmund, 565, 2017 [BibTeX] [PDF]

Vorträge

Autoren Titel / Veranstaltung / Jahr Download
Ruelmann, H.; Turek, S. Basic Machine Learning Approaches for the Acceleration of PDE Simulations, Computational Science and AI in Industry (CSAI 2021) ECCOMAS Thematic Conference, Virtual Conference, Juni 2021 [BibTeX] [PDF]
Ruelmann, H.; Geveler, M.; Turek, S. Basic Machine Learning Approaches for the Acceleration of PDE Simulations, European Numerical Mathematics and Advanced Applications Conference (ENUMATH), Egmond aan Zee, The Netherlands, Oktober 2019 [BibTeX]
Geveler, M.; Ruelmann, H.; Turek, S. Machine Learning Approaches for the Acceleration of the Linear Solver in PDE Simulations, , April 2019, Workshop on Machine Learning Algorithms in Scientific Computing, Nottingham [BibTeX] [PDF]
Ruelmann, H.; Geveler, M.; Turek, S. On the prospects of using machine learning for the numerical simulation of PDEs: Training neural networks to assemble approximate inverses, , Juni 2018 [BibTeX]
Geveler, M.; Ribbrock, D.; Ruelmann, H.; Donner, D.; Höppke, C.; Schneider, D.; Tomaschewski, D.; Turek, S. The ICARUS white paper: A scalable, energy-efficient, solar-powered HPC center based on low power GPUs, UcHPC'16 at Euro-Par'16, Grenoble, Aug 2016 [BibTeX] [PDF]