Former members: Dr. Alexander Dicke
- Alexander joined the group in October 2018 and completed his PhD in October 2022
- His thesis entitled Spectral inequalities for Schrödinger operators and parabolic observability can be found here
- To visit his current webpage follow this link
Here you find the key information about his activities while member of our group:
Publications
- Control problem for quadratic parabolic differential equations with sensor sets of finite volume or anisotropically decaying density. Alexander Dicke, Albrecht Seelmann, Ivan Veselić (2023). In: ESAIM. Control, Optimisation and Calculus of Variations, Volume 29, Issue 80, pp. 35. [DOI] [arXiv]
- Quantitative unique continuation for spectral subspaces of Schrödinger operators with singular potentials. Alexander Dicke, Christian Rose, Albrecht Seelmann, Martin Tautenhahn (2023). In: Journal of Differential Equations, Volume 369, pp. 405–423. [DOI] [arXiv]
- Uncertainty principle for Hermite functions and null-controllability with sensor sets of decaying density. Alexander Dicke, Albrecht Seelmann, Ivan Veselić (2023). In: Journal of Fourier Analysis and Applications, Volume 29, Issue 1, pp. 11. [DOI] [arXiv]
- Spectral inequalities for Schrödinger operators and parabolic observability. Alexander Dicke (2022). PhD thesis, Technische Universität Dortmund. [DOI]
- Uncertainty principles with error term in Gelfand-Shilov spaces. Alexander Dicke, Albrecht Seelmann (2022). In: Archiv der Mathematik, Volume 119, Issue 4, pp. 413–425. [DOI] [arXiv]
- Spherical Logvinenko-Sereda-Kovrijkine type inequality and null-controllability of the heat equation on the sphere. Alexander Dicke, Ivan Veselić (2022). [arXiv]
- Spectral inequality with sensor sets of decaying density for Schrödinger operators with power growth potentials. Alexander Dicke, Albrecht Seelmann, Ivan Veselić (2022). [arXiv]
- Wegner Estimate for Random Divergence-Type Operators Monotone in the Randomness. Alexander Dicke (2021). In: Mathematical Physics, Analysis and Geometry, Volume 24, Issue 3, pp. 22. [DOI] [arXiv]
- Unique continuation for the gradient of eigenfunctions and Wegner estimates for random divergence-type operators. Alexander Dicke, Ivan Veselić (2020). [arXiv]
Talks and posters
- Eigenvalue Lifting for Divergence-Type Operators. DMV Jahrestagung 2020, Minisymposium Spectral theory of operators and matrices and partial differential equations, Chemnitz, September 14–17.
- Unique continuation for the gradient and applications. Oberseminar Analysis, TU Dresden, December 5.
- Wegner estimates for random divergence-type operators. Research Seminar Analysis, Stochastics and Mathematical Physics, TU Chemnitz, December 4.
- Unique continuation for the gradient and applications. 6th Najman Conference on Spectral Theory and Differential Equations, Sveti Martin na Muri, Croatia, September 8–13, poster.
- Zufällige Divergenz-Typ Operatoren. Oberseminar Analysis, Mathematische Physik & Dynamische Systeme, TU Dortmund, May 21.
Teaching
- Winter term 21/22: Organisation and exercise class Analysis I for future teachers
- Winter term 20/21: Exercise class Analysis I
- Summer term 2020: Support for digital teaching
- Winter term 19/20: Exercise class Analysis I
Kontakt
Adresse
TU Dortmund
Fakultät für Mathematik
Lehrstuhl IX
Vogelpothsweg 87
44227 Dortmund
Sie finden uns auf dem sechsten Stock des Mathetowers.
Sekretariat
Janine Textor (Raum M 620)
Tel.: (0231) 755-3063
Fax: (0231) 755-5219
Mail: janine.textor@tu-dortmund.de
Bürozeiten:
Di. und Do. von 8 bis 12 Uhr
Home Office:
Mo. und Fr. von 8 bis 12 Uhr
Weiteres