TU Dortmund
Fakultät für Mathematik

Publications of Analysis chair members


Showing search results 1–164 of 164.
2024
  • Application of Machine Learning and Convex Limiting to Subgrid Flux Modeling in the Shallow-Water Equations. Ilya Timofeyev, Alexey Schwarzmann, Dmitri Kuzmin (2024). [arXiv]
  • Unique continuation estimates for Baouendi--Grushin equations on cylinders. Paul Alphonse, Albrecht Seelmann (2024). [arXiv]
  • Sturm-Liouville problems and global bounds by small control sets and applications to quantum graphs. Michela Egidi, Delio Mugnolo, Albrecht Seelmann (2024). . [DOI] [arXiv]
  • A unified observability result for non-autonomous observation problems. Fabian Gabel, Albrecht Seelmann (2024). . [DOI] [arXiv]
  • Spectral inequality with sensor sets of decaying density for Schrödinger operators with power growth potentials. Alexander Dicke, Albrecht Seelmann, Ivan Veselić (2024). . [DOI] [arXiv]
  • Wegner estimate and localisation for alloy type operators with minimal support assumptions on the single site potential. Matthias Täufer, Ivan Veselić (2024). . [DOI] [arXiv]
2023
  • Control problem for quadratic parabolic differential equations with sensor sets of finite volume or anisotropically decaying density. Alexander Dicke, Albrecht Seelmann, Ivan Veselić (2023). . [DOI] [arXiv]
  • Relative residual bounds for eigenvalues in gaps of the essential spectrum. Albrecht Seelmann (2023). [arXiv]
  • Quantitative unique continuation for spectral subspaces of Schrödinger operators with singular potentials. Alexander Dicke, Christian Rose, Albrecht Seelmann, Martin Tautenhahn (2023). . [DOI] [arXiv]
  • Uncertainty principle for Hermite functions and null-controllability with sensor sets of decaying density. Alexander Dicke, Albrecht Seelmann, Ivan Veselić (2023). . [DOI] [arXiv]
  • A quantitative central limit theorem for Poisson horospheres in high dimensions. Zakhar Kabluchko, Daniel Rosen, Christoph Thäle (2023). [arXiv]
  • Unique continuation for the gradient of eigenfunctions and Wegner estimates for random divergence-type operators. Alexander Dicke, Ivan Veselić (2023). . [DOI] [arXiv]
2022
  • Quantitative spectral inequalities for the anisotropic Shubin operators and applications to null-controllability. Paul Alphonse, Albrecht Seelmann (2022). [arXiv]
  • Spectral inequalities for Schrödinger operators and parabolic observability. Alexander Dicke (2022). PhD thesis, Technische Universität Dortmund. [DOI]
  • Uncertainty principles with error term in Gelfand-Shilov spaces. Alexander Dicke, Albrecht Seelmann (2022). . [DOI] [arXiv]
  • Spherical Logvinenko-Sereda-Kovrijkine type inequality and null-controllability of the heat equation on the sphere. Alexander Dicke, Ivan Veselić (2022). [arXiv]
  • The reflection principle in the control problem of the heat equation. Michela Egidi, Albrecht Seelmann (2022). . [DOI] [arXiv]
  • Fluctuations of $\lambda$-geodesic Poisson hyperplanes in hyperbolic space. Zakhar Kabluchko, Daniel Rosen, Christoph Thäle (2022). [arXiv]
  • On a minimax principle in spectral gaps. Albrecht Seelmann (2022). . [DOI] [arXiv]
  • Limit theory of sparse random geometric graphs in high dimensions. Gilles Bonnet, Christian Hirsch, Daniel Rosen, Daniel Willhalm (2022). [arXiv]
2021
  • Unifying the treatment of indefinite and semidefinite perturbations in the subspace perturbation problem. Albrecht Seelmann (2021). . [DOI] [arXiv]
  • Wegner Estimate for Random Divergence-Type Operators Monotone in the Randomness. Alexander Dicke (2021). . [DOI] [arXiv]
  • Protecting points from operator pencils. Albrecht Seelmann, Matthias Täufer, Krešimir Veselić (2021). . [DOI] [arXiv]
  • An abstract Logvinenko-Sereda type theorem for spectral subspaces. Michela Egidi, Albrecht Seelmann (2021). . [DOI] [arXiv]
  • Uncertainty relations and applications in spectral and control theory. Ivan Veselić (2021). Oberwolfach Reports. [DOI] [arXiv]
  • Lifshitz asymptotics and localization for random breather models. Christoph Schumacher, Ivan Veselić (2021). [arXiv]
  • The Laplacian on Cartesian products with mixed boundary conditions. Albrecht Seelmann (2021). . [DOI] [arXiv]
  • Relative growth rate and contact Banach-Mazur distance. Jun Zhang, Daniel Rosen (2021). . [DOI] [arXiv]
  • Caustic-free regions for billiards on surfaces of constant curvature. Dan Florentin, Yaron Ostrover, Daniel Rosen (2021). . [DOI] [arXiv]
  • Random inscribed polytopes in projective geometries. Florian Besau, Daniel Rosen, Christoph Thäle (2021). . [DOI] [arXiv]
  • Quantum Hamiltonians with Weak Random Abstract Perturbation. II. Localization in the Expanded Spectrum. Denis Borisov, Matthias Täufer, Ivan Veselić (2021). . [DOI] [arXiv]
  • On null-controllability of the heat equation on infinite strips and control cost estimate. Michela Egidi (2021). . [DOI] [arXiv]
2020
  • A minimax principle in spectral gaps. Albrecht Seelmann (2020). Appendix to Unique continuation and lifting of spectral band edges of Schrödinger operators on unbounded domains by Ivica Nakić, Matthias Täufer, Martin Tautenhahn and Ivan Veselić. . [DOI] [arXiv]
  • Unique continuation and lifting of spectral band edges of Schrödinger operators on unbounded domains. Ivica Nakić, Matthias Täufer, Martin Tautenhahn, Ivan Veselić (2020). With an Appendix by Albrecht Seelmann. . [DOI] [arXiv]
  • Null-controllability and control cost estimates for the heat equation on unbounded and large bounded domains. Michela Egidi, Ivica Nakić, Albrecht Seelmann, Matthias Täufer, Martin Tautenhahn, Ivan Veselić (2020). In: Control Theory of Infinite-Dimensional Systems, pp. 117–157. Birkhäuser, Cham. [DOI] [arXiv]
  • Exhaustion approximation for the control problem of the heat or Schrödinger semigroup on unbounded domains. Albrecht Seelmann, Ivan Veselić (2020). . [DOI] [arXiv]
  • Topological persistence in geometry and analysis. Leonid Polterovich, Daniel Rosen, Karina Samvelyan, Jun Zhang (2020). American Mathematical Society, Providence, RI. [DOI] [arXiv]
  • Chekanov's dichotomy in contact topology. Daniel Rosen, Jun Zhang (2020). . [DOI] [arXiv]
  • Uniform Existence of the IDS on Lattices and Groups. Christoph Schumacher, Fabian Schwarzenberger, Ivan Veselić (2020). In: Analysis and Geometry on Graphs and Manifolds, pp. 445–478. Cambridge University Press. [DOI] [arXiv]
  • Band edge localization beyond regular Floquet eigenvalues. Albrecht Seelmann, Matthias Täufer (2020). . [DOI] [arXiv]
  • The Statistics of Noisy One-Stage Group Testing in Outbreaks. Christoph Schumacher, Matthias Täufer (2020). [arXiv]
  • Sharp estimates and homogenization of the control cost of the heat equation on large domains. Ivica Nakić, Matthias Täufer, Martin Tautenhahn, Ivan Veselić (2020). . [DOI] [arXiv]
  • On sampling and interpolation by model sets. Christoph Richard, Christoph Schumacher (2020). . [DOI] [arXiv]
  • Scale-free unique continuation estimates and Logvinenko-Sereda Theorems on the torus. Michela Egidi, Ivan Veselić (2020). . [DOI] [arXiv]
2019
  • Sampling and equidistribution theorems for elliptic second order operators, lifting of eigenvalues, and applications. Martin Tautenhahn, Ivan Veselić (2019). . [DOI]
  • Embeddings of free groups into asymptotic cones of Hamiltonian diffeomorphisms. Daniel Alvarez-Gavela, Victoria Kaminker, Asaf Kislev, Konstantin Kliakhandler, Andrei Pavlichenko, Lorenzo Rigolli, Daniel Rosen, Ood Shabtai, Bret Stevenson, Jun Zhang (2019). . [DOI] [arXiv]
  • Semidefinite perturbations in the subspace perturbation problem. Albrecht Seelmann (2019). . [DOI] [arXiv]
  • Asymptotics of random resonances generated by a point process of delta-interactions. Sergio Albeverio, Illya M. Karabash (2019). [arXiv]
  • Euler-Lagrange equations for full topology optimization of the Q-factor in leaky cavities. Matthias Eller, Illya M. Karabash (2019). [arXiv]
  • On the multilevel internal structure of the asymptotic distribution of resonances. Sergio Albeverio, Illya M. Karabash (2019). . [DOI]
  • Geometric conditions for the null-controllability of hypoelliptic quadratic parabolic equations with moving control supports. Karine Beauchard, Michela Egidi, Karel Pravda-Starov (2019). [arXiv]
  • Concentration inequalities in random Schrödinger operators. Christoph Schumacher (2019). Habilitation thesis, Technische Universität Dortmund. [DOI] [URL]
2018
  • Glivenko-Cantelli theory, Ornstein-Weiss quasi-tilings, and uniform ergodic theorems for distribution-valued fields over amenable groups. Christoph Schumacher, Fabian Schwarzenberger, Ivan Veselić (2018). . [DOI] [arXiv]
  • Sharp geometric condition for null-controllability of the heat equation on $\Bbb R^d$ and consistent estimates on the control cost. Michela Egidi, Ivan Veselić (2018). . [DOI] [arXiv]
  • Spectral localization for quantum Hamiltonians with weak random delta interaction. Denis Borisov, Matthias Täufer, Ivan Veselić (2018). . [DOI]
  • Scale-free unique continuation principle for spectral projectors, eigenvalue-lifting and Wegner estimates for random Schrödinger operators. Ivica Nakić, Matthias Täufer, Martin Tautenhahn, Ivan Veselić (2018). . [DOI] [arXiv]
  • Expansion of the spectrum in the weak disorder regime for random operators in continuum space. Denis Borisov, Francisco Hoecker-Escuti, Ivan Veselić (2018). . [DOI] [arXiv]
  • On an estimate in the subspace perturbation problem. Albrecht Seelmann (2018). . [DOI] [arXiv]
  • Duality of caustics in Minkowski billiards. Shiri Artstein-Avidan, Dan Florentin, Yaron Ostrover, Daniel Rosen (2018). . [DOI] [arXiv]
  • On Sandon-type metrics for contactomorphism group. Maia Fraser, Leonid Polterovich, Daniel Rosen (2018). . [DOI] [arXiv]
  • On Geometric and Dynamical Measurements in Symplectic and Contact Geometry. Daniel Rosen (2018). PhD thesis, Tel-Aviv University.
  • Wegner estimate and disorder dependence for alloy-type Hamiltonians with bounded magnetic potential. Matthias Täufer, Martin Tautenhahn (2018). . [DOI]
2017
  • Scale-free quantitative unique continuation and equidistribution estimates for solutions of elliptic differential equations. Denis Borisov, Martin Tautenhahn, Ivan Veselić (2017). . [DOI] [arXiv]
  • Lifshitz tails for Schrödinger operators with random breather potential. Christoph Schumacher, Ivan Veselić (2017). . [DOI] [arXiv]
  • A Glivenko-Cantelli theorem for almost additive functions on lattices. Christoph Schumacher, Fabian Schwarzenberger, Ivan Veselić (2017). . [DOI] [arXiv]
  • Unique continuation principles and their absence for Schrödinger eigenfunctions on combinatorial and quantum graphs and in continuum space. Norbert Peyerimhoff, Matthias Täufer, Ivan Veselić (2017). . [DOI] [arXiv]
  • Scale-free and quantitative unique continuation for infinite dimensional spectral subspaces of {S}chr\"{o}dinger operators. Matthias Täufer, Martin Tautenhahn (2017). . [DOI]
2016
  • Ocean rogue waves and their phase space dynamics in the limit of a linear interference model. Simon Birkholz, Carsten Brée, Ivan Veselić, Ayhan Demircan, Günter Steinmeyer (2016). . [DOI]
  • Quantum Hamiltonians with weak random abstract perturbation. I. Initial length scale estimate. Denis Borisov, Anastasia Golovina, Ivan Veselić (2016). . [DOI] [arXiv]
  • Harmonic analysis and random Schrödinger operators. Matthias Täufer, Martin Tautenhahn, Ivan Veselić (2016). In: Spectral theory and mathematical physics, pp. 223–255. Birkhäuser, Cham. [DOI] [arXiv]
  • Sampling inequality for $L^2$-norms of eigenfunctions, spectral projectors, and Weyl sequences of Schrödinger operators. Martin Tautenhahn, Ivan Veselić (2016). . [DOI] [arXiv]
  • Wegner estimate for Landau-breather Hamiltonians. Matthias Täufer, Ivan Veselić (2016). . [DOI] [arXiv]
  • A unified approach to convergence rates for $\ell^1$-regularization and lacking sparsity. Jens Flemming, Bernd Hofmann, Ivan Veselić (2016). . [DOI] [arXiv]
  • Expansion of the almost sure spectrum in the weak disorder regime. Denis Borisov, Francisco Hoecker-Escuti, Ivan Veselić (2016). . [DOI] [arXiv]
  • Notes on the subspace perturbation problem for off-diagonal perturbations. Albrecht Seelmann (2016). . [DOI] [arXiv]
  • On invariant graph subspaces. Konstantin A. Makarov, Stephan Schmitz, Albrecht Seelmann (2016). . [DOI] [arXiv]
2015
  • Discrete alloy-type models: regularity of distributions and recent results. Martin Tautenhahn, Ivan Veselić (2015). . [arXiv]
  • Multiscale unique continuation properties of eigenfunctions. Denis Borisov, Ivica Nakić, Christian Rose, Martin Tautenhahn, Ivan Veselić (2015). In: Operator semigroups meet complex analysis, harmonic analysis and mathematical physics, pp. 107–118. Birkhäuser, Cham. [DOI] [arXiv]
  • Conditional Wegner estimate for the standard random breather potential. Matthias Täufer, Ivan Veselić (2015). . [DOI] [arXiv]
  • Scale-free uncertainty principles and Wegner estimates for random breather potentials. Ivica Nakić, Matthias Täufer, Martin Tautenhahn, Ivan Veselić (2015). . [DOI] [arXiv]
  • On $\ell^1$-regularization in light of Nashed's ill-posedness concept. Jens Flemming, Bernd Hofmann, Ivan Veselić (2015). . [DOI] [arXiv]
  • Wegner estimate and localization for alloy-type models with sign-changing exponentially decaying single-site potentials. Karsten Leonhardt, Norbert Peyerimhoff, Martin Tautenhahn, Ivan Veselić (2015). . [DOI] [arXiv]
  • Spectral gap estimates for some block matrices. Ivan Veselić, Krešimir Veselić (2015). . [DOI] [arXiv]
  • Random walks across the sea: the origin of rogue waves?. Simon Birkholz, Carsten Brée, Ivan Veselić, Ayhan Demircan, Günter Steinmeyer (2015). [arXiv]
  • The length metric on the set of orthogonal projections and new estimates in the subspace perturbation problem. Konstantin A. Makarov, Albrecht Seelmann (2015). . [DOI]
  • Graph Laplacians do not generate strongly continuous semigroups. Thomas Kalmes, Christoph Schumacher (2015). preprint. [arXiv] [URL]
  • Approximation of the Integrated Density of States on Sofic Groups. Christoph Schumacher, Fabian Schwarzenberger (2015). . [DOI] [arXiv]
2014
  • Equidistribution estimates for eigenfunctions and eigenvalue bounds for random operators. Denis Borisov, Martin Tautenhahn, Ivan Veselić (2014). In: Mathematical results in quantum mechanics, pp. 89–99. World Scientific Publishing, Hackensack, NJ. [DOI] [arXiv]
  • Lifshitz asymptotics for percolation Hamiltonians. Reza Samavat, Peter Stollmann, Ivan Veselić (2014). . [DOI] [arXiv]
  • Unbounded quantum graphs with unbounded boundary conditions. Daniel Lenz, Carsten Schubert, Ivan Veselić (2014). . [DOI] [arXiv]
  • Minami's estimate: beyond rank one perturbation and monotonicity. Martin Tautenhahn, Ivan Veselić (2014). . [DOI] [arXiv]
  • Notes on the $\sin 2\Theta$ theorem. Albrecht Seelmann (2014). . [DOI] [arXiv]
  • Perturbation theory for spectral subspaces. Albrecht Seelmann (2014). PhD thesis, Johannes Gutenberg-Universität Mainz. [DOI]
  • The Anderson model on the Bethe lattice: Lifshitz tails. Francisco Hoecker-Escuti, Christoph Schumacher (2014). preprint. [URL]
  • Function Theory on Symplectic Manifolds. Leonid Polterovich, Daniel Rosen (2014). American Mathematical Society, Providence, RI. [DOI]
2013
  • Uniform existence of the integrated density of states for randomly weighted Hamiltonians on long-range percolation graphs. Slim Ayadi, Fabian Schwarzenberger, Ivan Veselić (2013). . [DOI] [arXiv]
  • Low lying eigenvalues of randomly curved quantum waveguides. Denis Borisov, Ivan Veselić (2013). . [DOI] [arXiv]
  • Scale-free unique continuation estimates and applications to random Schrödinger operators. Constanza Rojas-Molina, Ivan Veselić (2013). . [DOI] [arXiv]
  • Comment on ''The problem of deficiency indices for discrete Schrödinger operators on locally finite graphs''. Sylvain Golénia, Christoph Schumacher (2013). . [DOI] [arXiv]
2012
  • Spectral gaps for self-adjoint second order operators. Denis Borisov, Ivan Veselić (2012). . [DOI] [arXiv]
  • Discrete Schrödinger operators with random alloy-type potential. Alexander Elgart, Helge Krüger, Martin Tautenhahn, Ivan Veselić (2012). In: Spectral analysis of quantum Hamiltonians, pp. 107–131. Birkhäuser, Basel. [DOI] [arXiv]
  • Erratum to: A Banach space-valued ergodic theorem and the uniform approximation of the integrated density of states. Daniel Lenz, Fabian Schwarzenberger, Ivan Veselić (2012). . [DOI] [arXiv]
  • Classical motion in random potentials. Andreas Knauf, Christoph Schumacher (2012). . [DOI] [arXiv]
2011
  • Anderson localization for a class of models with a sign-indefinite single-site potential via fractional moment method. Alexander Elgart, Martin Tautenhahn, Ivan Veselić (2011). . [DOI] [arXiv]
  • Generalized eigenfunctions and spectral theory for strongly local Dirichlet forms. Daniel Lenz, Peter Stollmann, Ivan Veselić (2011). In: Spectral theory and analysis, pp. 83–106. Springer, Basel. [DOI] [arXiv]
  • Lipschitz-continuity of the integrated density of states for Gaussian random potentials. Ivan Veselić (2011). . [DOI] [arXiv]
  • $L^p$-approximation of the integrated density of states for Schrödinger operators with finite local complexity. Michael J. Gruber, Daniel Lenz, Ivan Veselić (2011). . [DOI] [arXiv]
  • A Banach space-valued ergodic theorem and the uniform approximation of the integrated density of states. Daniel Lenz, Fabian Schwarzenberger, Ivan Veselić (2011). . [DOI] [arXiv]
  • Low lying spectrum of weak-disorder quantum waveguides. Denis Borisov, Ivan Veselić (2011). . [DOI] [arXiv]
  • Quantitative unique continuation principle and Wegner estimates (on joint work with C. Rojas-Molina). Ivan Veselić (2011). . [DOI]
  • The problem of deficiency indices for discrete Schrödinger operators on locally finite graphs. Sylvain Golénia, Christoph Schumacher (2011). . [DOI] [arXiv]
2010
  • Wegner estimates for sign-changing single site potentials. Ivan Veselić (2010). . [DOI] [arXiv]
  • Localization via fractional moments for models on $\Bbb Z$ with single-site potentials of finite support. Alexander Elgart, Martin Tautenhahn, Ivan Veselić (2010). . [DOI] [arXiv]
  • Wegner estimate for discrete alloy-type models. Ivan Veselić (2010). . [DOI] [arXiv]
  • Spectral properties of discrete alloy-type models. Martin Tautenhahn, Ivan Veselić (2010). In: XVIth International Congress on Mathematical Physics, pp. 551–555. World Scientific Publishing, Hackensack, NJ. [DOI] [arXiv]
  • Lifshitz tails for a class of Schrödinger operators with random breather-type potential. Werner Kirsch, Ivan Veselić (2010). . [DOI] [arXiv]
  • Metric properties of the set of orthogonal projections and their applications to operator perturbation theory. Konstantin A. Makarov, Albrecht Seelmann (2010). [arXiv]
  • Klassische Bewegung in zufälligen Potentialen mit Coulomb-Singularitäten. Christoph Schumacher (2010). PhD thesis, FAU Erlangen/Nürnberg. [URL]
  • Poisson brackets, quasi-states and symplectic integrators. Michael Entov, Leonid Polterovich, Daniel Rosen (2010). . [DOI] [arXiv]
2009
  • Spectral asymptotics of percolation Hamiltonians on amenable Cayley graphs. Tonći Antunović, Ivan Veselić (2009). In: Methods of spectral analysis in mathematical physics, pp. 1–29. Birkhäuser, Basel. [DOI] [arXiv]
  • Equality of Lifshitz and van Hove exponents on amenable Cayley graphs. Tonći Antunović, Ivan Veselić (2009). . [DOI] [arXiv]
  • Hamiltonians on discrete structures: jumps of the integrated density of states and uniform convergence. Daniel Lenz, Ivan Veselić (2009). . [DOI] [arXiv]
  • Continuity of the integrated density of states on random length metric graphs. Daniel Lenz, Norbert Peyerimhoff, Olaf Post, Ivan Veselić (2009). . [DOI] [arXiv]
  • The Allegretto-Piepenbrink theorem for strongly local Dirichlet forms. Daniel Lenz, Peter Stollmann, Ivan Veselić (2009). . [arXiv]
  • Wegner-type bound for discrete alloy-type models. Ivan Veselić (2009). . [DOI]
  • Mini-Workshop: Modeling and Understanding Random Hamiltonians: Beyond Monotonicity, Linearity and Independence. Günter Stolz, Ivan Veselić (2009). . [DOI]
2008
  • Optimal Wegner estimates for random Schrödinger operators on metric graphs. Michael J. Gruber, Mario Helm, Ivan Veselić (2008). In: Analysis on graphs and its applications, pp. 409–422. American Mathematical Society, Providence, RI. [DOI] [arXiv]
  • Uniform existence of the integrated density of states for combinatorial and metric graphs over $\Bbb Z^d$. Michael J. Gruber, Daniel Lenz, Ivan Veselić (2008). In: Analysis on graphs and its applications, pp. 87–108. American Mathematical Society, Providence, RI. [DOI] [arXiv]
  • Uniform existence of the integrated density of states for models on $\Bbb Z^d$. Daniel Lenz, Peter Müller, Ivan Veselić (2008). . [DOI] [arXiv]
  • The modulus of continuity of Wegner estimates for random Schrödinger operators on metric graphs. Michael J. Gruber, Ivan Veselić (2008). . [DOI] [arXiv]
  • Continuity properties of the integrated density of states on manifolds. Daniel Lenz, Norbert Peyerimhoff, Olaf Post, Ivan Veselić (2008). . [DOI] [arXiv]
  • Sharpness of the phase transition and exponential decay of the subcritical cluster size for percolation and quasi-transitive graphs. Tonći Antunović, Ivan Veselić (2008). . [DOI] [arXiv]
  • Existence and regularity properties of the integrated density of states of random Schrödinger Operators. Ivan Veselić (2008). Revised version of the habilitation thesis. Springer, Berlin and Heidelberg. [DOI]
  • Wegner estimates for non-monotoneously correlated alloy type models. Ivan Veselić (2008). . [DOI]
  • Quanten-Kodierungstheorie und kodierte Operationen am Beispiel der Quanten-Fouriertransformation. Albrecht Seelmann (2008). Diploma thesis, Johannes Gutenberg-Universität Mainz.
2007
  • Uniform existence of the integrated density of states for random Schrödinger operators on metric graphs over $\Bbb Z^d$. Michael J. Gruber, Daniel H. Lenz, Ivan Veselić (2007). . [DOI] [arXiv]
  • Linear Wegner estimate for alloy-type Schrödinger operators on metric graphs. Mario Helm, Ivan Veselić (2007). . [DOI] [arXiv]
  • Groupoids, von Neumann algebras and the integrated density of states. Daniel Lenz, Norbert Peyerimhoff, Ivan Veselić (2007). . [DOI] [arXiv]
  • Lower bounds on the lowest spectral gap of singular potential Hamiltonians. Sylwia Kondej, Ivan Veselić (2007). . [DOI] [arXiv]
  • Spectral gap of segments of periodic waveguides. Sylwia Kondej, Ivan Veselić (2007). . [DOI] [arXiv]
  • Lifshitz asymptotics for Hamiltonians monotone in the randomness. Ivan Veselić (2007). . [DOI] [arXiv]
  • Mini-Workshop: Multiscale and Variational Methods in Material Science and Quantum Theory of Solids. Isabelle Catto, Isaac Chenchiah, Ivan Veselić, Johannes Zimmer (2007). . [DOI]
2006
  • Existence and regularity properties of the integrated density of states of random Schrödinger Operators. Ivan Veselić (2006). Habilitation thesis, Technische Universität Chemnitz. [URL]
  • On the Lipschitz continuity of the integrated density of states for sign-indefinite potentials. Vadim Kostrykin, Ivan Veselić (2006). . [DOI] [arXiv]
  • Bounds on the spectral shift function and the density of states. Dirk Hundertmark, Rowan Killip, Shu Nakamura, Peter Stollmann, Ivan Veselić (2006). . [DOI] [arXiv]
  • Spectral properties of Anderson-percolation Hamiltonians. Ivan Veselić (2006). . [DOI] [arXiv]
  • Mini-Workshop: $L^2$-Spectral Invariants and the Integrated Density of States. Josef Dodziuk, Daniel Lenz, Thomas Schick, Ivan Veselić (2006). . [DOI]
2005
  • Spectral analysis of percolation Hamiltonians. Ivan Veselić (2005). . [DOI] [arXiv]
  • Quantum site percolation on amenable graphs. Ivan Veselić (2005). In: Proceedings of the Conference on Applied Mathematics and Scientific Computing, pp. 317–328. Springer, Dordrecht. [DOI] [arXiv]
2004
  • Integrated density of states and Wegner estimates for random Schrödinger operators. Ivan Veselić (2004). In: Spectral theory of Schrödinger operators, pp. 97–183. American Mathematical Society, Providence, RI. [DOI] [arXiv]
  • Integrated density of states for random metrics on manifolds. Daniel Lenz, Norbert Peyerimhoff, Ivan Veselić (2004). . [DOI] [arXiv]
  • Bound on the spectral shift function and the (integrated) density of states. Dirk Hundertmark, Rowan Killip, Shu Nakamura, Ivan Veselić (2004). . [DOI]
  • Klassische Bewegung in zufälligen Potentialen. Christoph Schumacher (2004). Diploma thesis, FAU Erlangen/Nürnberg.
2003
  • Random Schrödinger operators on manifolds. Daniel Lenz, Norbert Peyerimhoff, Ivan Veselić (2003). . [arXiv]
  • Existence of the density of states for some alloy type models with single site potentials that change sign. Ivan Veselić (2003). In: Applied mathematics and scientific computing, pp. 301–311. Springer, Boston, MA. [DOI] [arXiv]
2002
  • Wegner estimate for indefinite Anderson potentials: some recent results and applications. Vadim Kostrykin, Ivan Veselić (2002). . [arXiv]
  • Existence of the density of states for one-dimensional alloy-type potentials with small support. Werner Kirsch, Ivan Veselić (2002). In: Mathematical results in quantum mechanics, pp. 171–176. American Mathematical Society, Providence, RI. [DOI] [arXiv]
  • Integrated density of states for ergodic random Schrödinger operators on manifolds. Norbert Peyerimhoff, Ivan Veselić (2002). . [DOI] [arXiv]
  • Localization for random perturbations of periodic Schrödinger operators with regular Floquet eigenvalues. Ivan Veselić (2002). . [DOI] [arXiv]
  • Wegner estimate and the density of states of some indefinite alloy-type Schrödinger operators. Ivan Veselić (2002). . [DOI] [arXiv]
  • Wegner estimate for sparse and other generalized alloy type potentials. Werner Kirsch, Ivan Veselić (2002). . [DOI]
2001
  • Indefinite Probleme bei der Anderson-Lokalisierung. Ivan Veselić (2001). PhD thesis, Ruhr-Universität Bochum. [URL]
2000
  • Integrated density of states for random Schrödinger operators on manifolds. Norbert Peyerimhoff, Ivan Veselić (2000). MaPhySto research report. [URL]
1996
  • Lokalisierung bei zufällig gestörten periodischen Schrödingeroperatoren in Dimension Eins. Ivan Veselić (1996). Diploma thesis, Ruhr-Universität Bochum. [URL]

Kontakt

Adresse

TU Dortmund
Fakultät für Mathematik
Lehrstuhl IX
Vogelpothsweg 87
44227 Dortmund

Sie finden uns auf dem sechsten Stock des Mathetowers.

Sekretariat

Janine Textor (Raum M 620)

Tel.: (0231) 755-3063
Fax: (0231) 755-5219
Mail: janine.textor@tu-dortmund.de
Bürozeiten:
Di. und Do. von 8 bis 12 Uhr
Home Office:
Mo. und Fr. von 8 bis 12 Uhr

Weiteres