TU Dortmund
Fakultät für Mathematik

Dr. Albrecht Seelmann

Name Dr. Albrecht Seelmann
Address TU Dortmund
Fakultät für Mathematik
Lehrstuhl LSIX
Vogelpothsweg 87
44227 Dortmund
Room M 624
Telephone (0231) 755-3432
(0231) 755-3063   (secretariat)
Telefax (0231) 755-5219
E-mail albrecht.seelmann[at]math.tu-dortmund.de

Research

Research interests

Peer-reviewed articles
2024
  • Sturm-Liouville problems and global bounds by small control sets and applications to quantum graphs. Michela Egidi, Delio Mugnolo, Albrecht Seelmann (2024). . [DOI] [arXiv]
  • A unified observability result for non-autonomous observation problems. Fabian Gabel, Albrecht Seelmann (2024). . [DOI] [arXiv]
  • Spectral inequality with sensor sets of decaying density for Schrödinger operators with power growth potentials. Alexander Dicke, Albrecht Seelmann, Ivan Veselić (2024). . [DOI] [arXiv]
2023
  • Control problem for quadratic parabolic differential equations with sensor sets of finite volume or anisotropically decaying density. Alexander Dicke, Albrecht Seelmann, Ivan Veselić (2023). . [DOI] [arXiv]
  • Quantitative unique continuation for spectral subspaces of Schrödinger operators with singular potentials. Alexander Dicke, Christian Rose, Albrecht Seelmann, Martin Tautenhahn (2023). . [DOI] [arXiv]
  • Uncertainty principle for Hermite functions and null-controllability with sensor sets of decaying density. Alexander Dicke, Albrecht Seelmann, Ivan Veselić (2023). . [DOI] [arXiv]
2022
  • Uncertainty principles with error term in Gelfand-Shilov spaces. Alexander Dicke, Albrecht Seelmann (2022). . [DOI] [arXiv]
  • The reflection principle in the control problem of the heat equation. Michela Egidi, Albrecht Seelmann (2022). . [DOI] [arXiv]
  • On a minimax principle in spectral gaps. Albrecht Seelmann (2022). . [DOI] [arXiv]
2021
  • Unifying the treatment of indefinite and semidefinite perturbations in the subspace perturbation problem. Albrecht Seelmann (2021). . [DOI] [arXiv]
  • Protecting points from operator pencils. Albrecht Seelmann, Matthias Täufer, Krešimir Veselić (2021). . [DOI] [arXiv]
  • An abstract Logvinenko-Sereda type theorem for spectral subspaces. Michela Egidi, Albrecht Seelmann (2021). . [DOI] [arXiv]
  • The Laplacian on Cartesian products with mixed boundary conditions. Albrecht Seelmann (2021). . [DOI] [arXiv]
2020
  • A minimax principle in spectral gaps. Albrecht Seelmann (2020). Appendix to Unique continuation and lifting of spectral band edges of Schrödinger operators on unbounded domains by Ivica Nakić, Matthias Täufer, Martin Tautenhahn and Ivan Veselić. . [DOI] [arXiv]
  • Null-controllability and control cost estimates for the heat equation on unbounded and large bounded domains. Michela Egidi, Ivica Nakić, Albrecht Seelmann, Matthias Täufer, Martin Tautenhahn, Ivan Veselić (2020). In: Control Theory of Infinite-Dimensional Systems, pp. 117–157. Birkhäuser, Cham. [DOI] [arXiv]
  • Exhaustion approximation for the control problem of the heat or Schrödinger semigroup on unbounded domains. Albrecht Seelmann, Ivan Veselić (2020). . [DOI] [arXiv]
  • Band edge localization beyond regular Floquet eigenvalues. Albrecht Seelmann, Matthias Täufer (2020). . [DOI] [arXiv]
2019
  • Semidefinite perturbations in the subspace perturbation problem. Albrecht Seelmann (2019). . [DOI] [arXiv]
2018
  • On an estimate in the subspace perturbation problem. Albrecht Seelmann (2018). . [DOI] [arXiv]
2016
  • Notes on the subspace perturbation problem for off-diagonal perturbations. Albrecht Seelmann (2016). . [DOI] [arXiv]
  • On invariant graph subspaces. Konstantin A. Makarov, Stephan Schmitz, Albrecht Seelmann (2016). . [DOI] [arXiv]
2015
  • The length metric on the set of orthogonal projections and new estimates in the subspace perturbation problem. Konstantin A. Makarov, Albrecht Seelmann (2015). . [DOI]
2014
  • Notes on the $\sin 2\Theta$ theorem. Albrecht Seelmann (2014). . [DOI] [arXiv]
Preprints
2024
  • Unique continuation estimates for Baouendi--Grushin equations on cylinders. Paul Alphonse, Albrecht Seelmann (2024). [arXiv]
2023
  • Relative residual bounds for eigenvalues in gaps of the essential spectrum. Albrecht Seelmann (2023). [arXiv]
2022
  • Quantitative spectral inequalities for the anisotropic Shubin operators and applications to null-controllability. Paul Alphonse, Albrecht Seelmann (2022). [arXiv]
2010
  • Metric properties of the set of orthogonal projections and their applications to operator perturbation theory. Konstantin A. Makarov, Albrecht Seelmann (2010). [arXiv]
Theses
2014
  • Perturbation theory for spectral subspaces. Albrecht Seelmann (2014). PhD thesis, Johannes Gutenberg-Universität Mainz. [DOI]
2008
  • Quanten-Kodierungstheorie und kodierte Operationen am Beispiel der Quanten-Fouriertransformation. Albrecht Seelmann (2008). Diploma thesis, Johannes Gutenberg-Universität Mainz.
Talks
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
  • On the subspace perturbation problem. Functional Analysis, Operator Theory and Applications, Workshop on the Occasion of the 90th Birthday of Professor Heinz Günther Tillmann, Mainz, October 23–25.
2012
2011
2010

Teaching

Short CV

Kontakt

Adresse

TU Dortmund
Fakultät für Mathematik
Lehrstuhl IX
Vogelpothsweg 87
44227 Dortmund

Sie finden uns auf dem sechsten Stock des Mathetowers.

Sekretariat

Janine Textor (Raum M 620)

Tel.: (0231) 755-3063
Fax: (0231) 755-5219
Mail: janine.textor@tu-dortmund.de
Bürozeiten:
Di. und Do. von 8 bis 12 Uhr
Home Office:
Mo. und Fr. von 8 bis 12 Uhr

Weiteres