TU Dortmund
Fakultät für Mathematik

Uniform convergence of random functions on amenable groups

Title Uniform convergence of random functions on amenable groups
Principal Investigator Prof. Dr. Ivan Veselić
Researcher M. Sc. Max Kämper

Summary

This project aims to show and quantify the uniform almost-sure convergence of function-valued random fields over the power set of a finitely generated amenable group along a Følner sequence.
Asymptotics for these convergences have already been established in many cases, however a fully quantified bound is still missing.
Important parts of this research are the theory of amenable groups, specifically \(\epsilon\)-quasitilings, multivariate Glivenko-Cantelli theorems and the theory of empirical processes.
An example of an applicatication is the convergence of eigenvalue-counting functions for Anderson operators on finite lattices to the integrated density of states of the operator on the whole lattice.

Literature

2020
  • Uniform Existence of the IDS on Lattices and Groups. Christoph Schumacher, Fabian Schwarzenberger, Ivan Veselić (2020). In: Analysis and Geometry on Graphs and Manifolds, pp. 445–478. Cambridge University Press. [DOI] [arXiv]
2018
  • Glivenko-Cantelli theory, Ornstein-Weiss quasi-tilings, and uniform ergodic theorems for distribution-valued fields over amenable groups. Christoph Schumacher, Fabian Schwarzenberger, Ivan Veselić (2018). . [DOI] [arXiv]
2017
  • A Glivenko-Cantelli theorem for almost additive functions on lattices. Christoph Schumacher, Fabian Schwarzenberger, Ivan Veselić (2017). . [DOI] [arXiv]

Kontakt

Adresse

TU Dortmund
Fakultät für Mathematik
Lehrstuhl IX
Vogelpothsweg 87
44227 Dortmund

Sie finden uns auf dem sechsten Stock des Mathetowers.

Sekretariat

Janine Textor (Raum M 620)

Tel.: (0231) 755-3063
Fax: (0231) 755-5219
Mail: janine.textor@tu-dortmund.de
Bürozeiten:
Di. und Do. von 8 bis 12 Uhr
Home Office:
Mo. und Fr. von 8 bis 12 Uhr

Weiteres