Sprungmarken

Servicenavigation

TU Dortmund

Hauptnavigation


Bereichsnavigation

Mathematisches Kolloquium

Datum Gastredner Thema Ort
Im Rahmen des Mathematischen Kolloquiums
Oberseminar Analysis, Mathematische Physik, Dynamische Systeme
29.09.2023
12:15
Prof. Dr. Martin Lazar
Uni Dubrovnik
Eigenvalue decay bounds for the Gramian operator of the heat equation

Zusammenfassung


The talk deals with the eigenvalue decay of solution operators to operator Lyapunov equations, a relevant topic in the context of model reduction for parabolic control problems. We mainly focus on the Gramian operator that arises in the context of control and observation of heat processes in infinite time. By improving existing energy and observability estimates for parabolic equations, we obtain both upper and lower bounds on the convergence rate of the eigenvalues of the Gramian operator towards zero. Both bounds follow the same polynomial decay rate, up to a multiplicative constant, which ensures their optimality. This confirms the slow decay of the eigenvalues and limits the efficiency of model reduction. The theoretical findings are supported by numerical results.
[Abstract]
M 611
Im Rahmen des Mathematischen Kolloquiums
Oberseminar Analysis, Mathematische Physik, Dynamische Systeme
10.10.2023
14:00
Samuel Blotiu
Fakultät für Mathematik, TU Dortmund
Metriken mit nicht-negativer Schnittkrümmung [WWW] Mathematikgebäude, M511
Im Rahmen des Mathematischen Kolloquiums
Oberseminar Analysis, Mathematische Physik, Dynamische Systeme
28.11.2023
14:15
Prof. Dr. Christian Seifert
TU Hamburg
-Controllability and Weak Observability Estimates for the Heat Equation on Discrete Graphs

Zusammenfassung


We consider a weighted discrete graph over , i.e. is a countable discrete set, is a function on which induces a measure and is an edge weight. Then the corresponding Laplacian is a non-negative self-adjoint operator. We investigate whether (weak) observability estimates for the corresponding heat equation exist, i.e. we study if, for given final time and a subset of , the norm of the solution of the heat equation at time can be bounded by the portions of the solution on up to time and the norm of the initial condition. We will also comment on the impact of such estimates w.r.t. controllability. This is joint work with Peter Stollmann (Chemnitz) and Martin Tautenhahn (Leipzig).
[Abstract]
M 511