Sprungmarken

Servicenavigation

TU Dortmund

Hauptnavigation


Bereichsnavigation

Mathematikdidaktisches Kolloquium

Datum Gastredner Thema Ort
Im Rahmen des Mathematikdidaktischen Kolloquiums
27.05.2021
16:30 Uhr
Charlie Stripp
National Centre for Excellence in the Teaching of Mathematics, Sheffield (UK)
England's national Teaching for Mastery in Mathemtics programme

Zusammenfassung


In England, the National Centre for Excellence in the Teaching of Mathematics (NCETM) has developed and is implementing a national 'Teaching for Mastery' (TfM) programme to improve mathematics teaching in both primary (ages 5 to 11) and secondary (ages 11 – 16) schools. The programme is informed by mathematics teaching padagogy used in the far east, developed and tailored for England’s primary and secondary schools.
The programme started in 2014 through exchange visits between teachers of maths from schools in England and Shanghai.
The NCETM has also developed a national network of school-led ‘Maths Hubs’ across England and coordinates their work. The Maths Hubs support the professional development of mathematics teachers in their regions and enable the national implementation of the TfM programme.
Both the NCETM and the Maths Hubs are funded centrally by the Department for Education.
The talk will describe the development of the TfM programme and what has been achieved so far.
[Abstract]
[PDF]
Anmeldung per Mail bei Nikole Regadas Rodrigues
Fakultät für Mathematik (digital)
Im Rahmen des Mathematikdidaktischen Kolloquiums
28.10.2021
16:30
Professorin Dr. Hefendehl-Hebeker
Universität Duisburg-Essen
(1000-100) und ein Kolloquium – Spannende Fragen und Spannungsfelder der Mathematikdidaktik

Zusammenfassung


In einer – notwendig subjektiven – Rekonstruktion dessen, was die Mathematik- didaktik als wissenschaftliche Disziplin ausmacht, möchte die Vortragende ent- werfen, welches Gerüst von spannenden Leitfragen durch neunhundert und ei- nen Kolloquiumsvortrag hindurch tragen könnte, wie sich diese harmonisch aus Grundzügen der Mathematik selbst ergeben und welche begrenzenden Span- nungsfelder sich dabei auftun.
[Abstract]
[PDF] [WWW]
E28 oder per Zoom
Im Rahmen des Mathematikdidaktischen Kolloquiums
18.11.2021
16:30
Professor Dr. Tommy Dreyfus
Tel Aviv University
How can we know whether it is a proof?

Zusammenfassung


Proof is arguably what distinguishes mathematics most markedly from other do- mains of knowledge. Is it obvious what a proof is? Mathematicians have asked some incisive questions about the nature and role of proof. Research results on students’ conceptions of proof appear inconsistent: While beginning the transition to deductive reasoning is possible already in ele- mentary school, most high school students still have a vague notion of proof, at best. And many teachers are uncertain how to relate to non-algebraic arguments such as verbal, visual and generic ones.
[Abstract]
Zoom