Bereichsnavigation
Nebeninhalt
Contact
TU Dortmund
Faculty of Mathematics —
Chair III of Applied Mathematics
Vogelpothsweg 87
44227 Dortmund
Germany
Phone: +49-(0)231-755-3076
Fax: +49-(0)231-755-5933
E-mail:
Numerik
Projects
Project Title |
Project leader |
Runtime |
Sponsorship |
Concepts and realisation of adaptivity, error control and fast solvers for FEM discretisations with special respect to modern processor architecture |
Stefan Turek |
2 years; 1 year (finished) |
DFG |
Efficient FEM simulations to optimise gas liquid reactors in industry |
Stefan Turek |
3 years (finished) |
BMBF |
Efficient numerical methods and simulation techniques for granular flow based on material models |
Stefan Turek |
2 years; 2 years (finished) |
DFG |
Realisation of fast solvers and efficient data structures for problems with fluid-structure-interaction |
Stefan Turek |
1 year; 6 months (finished) |
DFG |
Ceramic plate heat exchangers and catalytic coated ceramic wall reactors as micro reactors for heterogeneously catalysed synthetic reactions |
Stefan Turek |
3 years (finished) |
BMBF |
Analysis and Postprocessing of Space-Time Compressed Flow Computations |
Stefan Turek |
2 years; 2 years (finished) |
DFG |
Efficient FEM discretisations and multi grid solvers for multi-phase flows with special consideration of bubble column reactors |
Stefan Turek |
2 years; 2 years (finished) |
DFG |
Numerical simulation of hetero-homogeneously coupled reactions in high temperature catalysis in a reverse flow reactor |
Stefan Turek |
2 years; 1 year (finished) |
DFG |
Development, analysis and realization of alternative numerical discretization techniques and efficient solvers for the Lattice Boltzmann method |
Stefan Turek |
2 years; 1 year (finished) |
DFG |
Realisation of fast solvers and efficient data structures for problems with fluid-structure-interaction |
Stefan Turek |
2 years; 1 year (finished) |
DFG |
Design, Analysis and Realisation of Mathematical Methods and High Performance Computing Techniques |
Stefan Turek |
2 years; 1 year; 2 years (finished) |
DFG |
Efficient solvers for generalized incompressible flow problems with special emphasis on pressure Schur complement techniques for linearized Navier-Stokes equations and extensions |
Stefan Turek |
2 years, 1 year (finished) |
DFG/RFBR |
Numerical techniques for incompressible particulate flows |
Stefan Turek |
3 years (finished) |
DFG |
Level Set methods for incompressible flows with free interfaces |
Dmitri Kuzmin |
3 years (finished) |
DFG |
Efficient numerical techniques for non-isothermal, highly viscous multiphase flow for the processing of graded plastics |
Stefan Turek |
4 years; 4 years (ongoing) |
DFG |
Experimental investigation of the residence time in micro reactors - influence of different geometries |
Stefan Turek |
2 years (finished) |
DFG |
Monolithic ALE methods and coupled multigrid solvers for fluid-structure interaction |
Stefan Turek |
2 years, 1 year (finished) |
DFG |
Fictitious boundary method for particulate multiphase flow problems |
Stefan Turek |
2 years (ongoing) |
DFG |
Development and Validation of Simulation Techniques for Deburring Microstructured Shape Memory Components by Abrasive Waterblasting |
Stefan Turek |
1 year (finished) |
DFG |
Efficient simulation technics for robust Least-Squares FEM fluid dynamics |
Stefan Turek |
1,5 years (ongoing) |
MERCUR |
Efficient FEM-discretization technique and fast solver for coupled solid-fluid problems in geotechnical production process on the basis of theory of porous media (TPM) |
Stefan Turek |
2 years (ongoing) |
DFG |
Derivation and realization of a posteriori grid adaptation techniques for high-resolution finite element schemes with application to compressible gas flows |
Dmitri Kuzmin |
1 year; 2 years (finished) |
DFG |
Nonconforming finite elements of higher order: discretisation, fast solvers and applications in computational fluid dynamics |
Stefan Turek |
3 years (ongoing) |
DFG |
Derivation and realization of high-resolution finite element schemes and efficient iterative solution algorithms for the numerical simulation of convection-dominated flow problems |
Dmitri Kuzmin |
2 years; 1 year (finished) |
DFG |
Numerical simulation of monodisperse droplet generation in nozzles |
Stefan Turek |
2 years; 2 years; 2 years (ongoing) |
DFG |
Hierarchical solution concepts for flow control problems |
Stefan Turek |
2 years; 1 year; 3 years (finished) |
DFG |
Geometry processing for the virtual realization of manufacturing processes |
Stefan Turek |
4 years (ongoing) |
DFG |
Lattice-Boltzmann methods for scalable multiphysics applications |
Stefan Turek |
3 years (finished) |
BMBF |
Modeling and numerical simulation of coating processes by thermal spray technology |
Stefan Turek
Matthias Möller |
4 years; 4 years (ongoing) |
DFG |
EXA-DUNE: Flexible PDE Solvers, Numerical Methods, and Applications |
Stefan Turek
Dominik Göddeke |
3 years (ongoing) |
DFG |
Hydrodynamic theory of wet particle systems ? Modeling, simulation and validation based on microscopic and macroscopic descriptions |
Stefan Turek |
3 years (ongoing) |
DFG/STW |
Asynchronous and fault-tolerant parallel multigrid methods for future HPC systems |
Dominik Göddeke |
1 Jahr (ongoing) |
MERCUR |
Scalable, recursively configurable, massively-parallel FEM-multigrid solvers for heterogeneous hardware architectures - Design, analysis and realisation in FEAST with applications in fluid mechanics |
Stefan Turek
Dominik Göddeke |
3 years (ongoing) |
DFG |
ExtremSimOpt: Modeling, Simulation and Optimisation of Fluids in Extreme Conditions |
Stefan Turek |
3 years (ongoing) |
BMBF |
Project Details
Concepts and realisation of adaptivity, error control and fast solvers for FEM discretisations with special respect to modern processor architecture
- Runtime
- 2 years; 1 year (finished)
- Project leader
- Stefan Turek
- Sponsorship
- DFG
- Project members
- Susanne Kilian
- Förderkennzeichen (Founding ID)
- DFG (NV): TU 102/1-1; TU 102/1-2
- Description
- This subproject is part of the FEAST project and has a scheduled
duration of 3 years. It pursues the overall aim of FEAST to develop
new numerical simulation tools which rely on the one hand on modern
mathematical methods (finite element discretisations, multi grid
method, a-posteriori error control, adaptive grid control) and on the
other hand explicitly exploits modern processor architecture, too
(cache orientation, pipelining, vector computers or massive-parallel
computer systems).
The current development release of the new software package FEAST
(`Finite Element Analysis & Solution Tools`) is to be extended in
matters of its special hierarchical data, solver and matrix structures
in order to significantly speed up complex FEM components - a
posteriori error control, adaptive grid control and recursive
hierarchical multi grid solver - using processor-adapted algorithms
and implementations. For some problem classes improvements in
efficiency of up to several orders of magnitude are expected; this is
absolutely mandatory if practical problems in 2D and especially in 3D
with often time depending solutions are to be successfully dealed with.
Efficient FEM simulations to optimise gas liquid reactors in industry
- Runtime
- 3 years (finished)
- Project leader
- Stefan Turek
- Sponsorship
- BMBF
- Project members
- Dmitri Kuzmin
- Decheng Wan
- Förderkennzeichen (Founding ID)
- BMBF: 03TUM1DO
- Description
- Bubble reactors and loop reactors are widely used industrial equipments to perform chemical reactions between gaseous and liquid species.The development of the underlying flow structures is a result of the interaction between different phenomena, such as hydrodynamics, mass transfer and chemical reactions. Dynamic numerical simulation has proven to be a promising tool for the design and scale-up of such reactors. However, even recently developed CFD software tools often lack the efficiency necessary for the simulation of realistic three dimensional configurations. This project aims to develop a robust, efficient and accurate numerical method, which shall be integrated into the already existing BUBBLE APPS simulation program on the basis of up to date High-Performance Computing techniques. The further aim of the project is the optimization of industrially installed loop reactors in agreement with BASF AG, Ludwigshafen.
- Publications
- Kuzmin, D.; Turek, S.: Flux correction tools for finite elements, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 209, Fakultät für Mathematik, TU Dortmund, 209, 2001 [PDF]
- Kuzmin, D.; Turek, S.: Flux correction tools for finite elements, J. Comput. Phys., 175, 2, 525-558, 2002 [PDF]
- Kuzmin, D.; Möller, M.; Turek, S.: Multidimensional FEM-FCT schemes for arbitrary time-stepping, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 215, Fakultät für Mathematik, TU Dortmund, 215, 2002 [PDF]
- Kuzmin, D.; Turek, S.: High resolution FEM-TVD schemes based on a fully multidimensional flux limiter, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 229, Fakultät für Mathematik, TU Dortmund, 229, 2003 [PDF]
- Kuzmin, D.; Möller, M.; Turek, S.: Multidimensional FEM-FCT schemes for arbitrary time-stepping, Int. J. Num. Meth. Fluids, 42, 3, 265-295, 2003 [PDF]
- Kuzmin, D.; Möller, M.; Turek, S.: High resolution FEM-FCT schemes for multidimenstional conservation laws, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 231, Fakultät für Mathematik, TU Dortmund, 231, 2003 [PDF]
- Kuzmin, D.; Möller, M.: Algebraic Flux Correction I. Scalar Conservation Laws, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 249, Fakultät für Mathematik, TU Dortmund, 249, 2004 [PDF]
- Kuzmin, D.; Möller, M.: Algebraic Flux Correction II. Compressible Euler Equations, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 250, Fakultät für Mathematik, TU Dortmund, 250, 2004 [PDF]
- Turek, S.; Kuzmin, D.: Algebraic flux correction III. incompressible flow problems, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 270, Fakultät für Mathematik, TU Dortmund, 270, 2004 [PDF]
- Kuzmin, D.; Möller, M.; Turek, S.: High-resolution FEM-FCT schemes for multidimensional conservation laws , Comput. Meth. Appl. Mech. Eng., 193, 45--47, 4915-4946, 2004 [PDF]
- Kuzmin, D.; Turek, S.: High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter, J. Comput. Phys., 198, 131-158, 2004 [PDF]
- Kuzmin, D.; Löhner, R.; Turek, S.: Flux-Corrected Transport, Scientific Computation, Springer, Subtitle: Principles, Algorithms and Applications, 3-540-23730-5, 2005
- Kuzmin, D.; Löhner, R.; Turek, S.: Flux-Corrected Transport, Springer, 2nd edition, 978-94-077-4037-2, 2012
Efficient numerical methods and simulation techniques for granular flow based on material models
- Runtime
- 2 years; 2 years (finished)
- Project leader
- Stefan Turek
- Sponsorship
- DFG
- External partners
- Prof. Dr.-Ing. Günter Rombach (TU Hamburg-Harburg)
- Project members
- Abderrahim Ouazzi
- Förderkennzeichen (Founding ID)
- DFG (SP): TU 102/4-1; TU 102/4-3
- Description
- This research project aims to extend the existing software
packages for the numerical simulation of fluid flows (FeatFlow)
and for storaging and draining operations in silos (Silo) with
respect to material models for granular media on the one hand and
the numerical algorithms on the other hand. The material models
used for bulk goods are of special importance because both solid
body behaviour (during storage) and flow behaviour (during
draining) have to be covered continuously. The experiences gained
with FeatFlow will lead to an implementation of more efficient
numerical algorithms in Silo to allow more accurate studies of
dynamic processes. Numerous applications incorporate nonstationary
interactions on different scales in space and time. Hence, the
requirements in storage space and, especially, computational time
are the main problem, even on high performance computers. Modern
numerical methods have to be employed which rely on accurate and
robust discretisations and highly efficient solvers for the
(nonlinear) high dimensional systems of equations. The exchange of
know-how on the numerical and mechanical respectively
silo-specific field as well as the possibility to perform
comparative computations will help to ensure the success of the
research project.
- Publications
- Turek, S.; Ouazzi, A.; Schmachtel, R.: Multigrid methods for stabilized nonconforming finite elements for incompressible flow involving the deformation tensor formulation, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 216, Fakultät für Mathematik, TU Dortmund, 216, 2002 [PDF]
- Turek, S.; Ouazzi, A.; Schmachtel, R.: Multigrid methods for stabilized nonconforming finite elements for incompressible flow involving the deformation tensor formulation, J. Num. Math., 10, 3, 235-248, 2002 [PDF]
- Ouazzi, A.; Turek, S.: Numerical methods and simulation techniques for flow with shear and pressure dependent viscosity, Feistauer, M., Dolejsi, V., Knobloch, P., Najzar, K., 668-676, Numerical Mathematics and Advanced Applications, Springer, Enumath 2003 Prague; ISBN-Nr. 3-540-21460-7, 2003 [PDF]
- Ouazzi, A.; Turek, S.: Numerical methods and simulation techniques for flow with shear and pressure dependent viscosity, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 241, Fakultät für Mathematik, TU Dortmund, 241, 2003 [PDF]
- Hron, J.; Ouazzi, A.; Turek, S.: A computational comparison of two FEM solvers for nonlinear incompressible flow, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 228, Fakultät für Mathematik, TU Dortmund, 228, 2003 [PDF]
- Hron, J.; Ouazzi, A.; Turek, S.: Finite element methods for the simulation of incompressible powder flow, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 269, Fakultät für Mathematik, TU Dortmund, 269, 2004 [PDF]
- Ouazzi, A.: Finite element simulation of nonlinear fluids with application to granular material and powder, PhD Thesis, 2005
- Hron, J.; Ouazzi, A.; Turek, S.: Finite element methods for the simulation of incompressible powder flow, Communications in Numerical Methods in Engineering, 21, 10, 581-596, 2005
- Turek, S.; Ouazzi, A.: Numerical simulation of powder flow by Finite Element methods, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 326, Fakultät für Mathematik, TU Dortmund, 326, 2006 [PDF]
Realisation of fast solvers and efficient data structures for problems with fluid-structure-interaction
- Runtime
- 1 year; 6 months (finished)
- Project leader
- Stefan Turek
- Sponsorship
- DFG
- External partners
- PD Dr. Franz-Theo Suttmeier (Universität Dortmund)
- Project members
- Jaroslav Hron
- Förderkennzeichen (Founding ID)
- DFG (NV): TU 102/5-1; TU 102/5-2
- Description
- The intention is to derive and realise efficient numerical methods
for industrial problems with fluid-structure-interaction. In
numerous applications highly nonstationary interactions on
different scales in space and time have to be handled. The amounts
of storage and, especially, computational time are one of the main
issues - even on high performance computers. Therefore, modern
numerical methods have to be used, methods that rely on accurate
and robust discretisations and highly efficient solvers for the
(nonlinear) high dimensional systems of equations. Simultaneously,
special data structures and implementation techniques have to be
employed to ensure that significant amounts of the theoretically
accomplishable peak performance of nearly 1 GFLOP/s are reached.
Our main applications are incompressible flows which show
primarily laminar, but at the same time nonlinear flow behaviour.
Thus, special FEM approaches in space and time have to be used to
allow rigorous error estimation and adaptive strategies to
increase accuracy. Combined with optimal multi grid techniques
solver components for flow and structure-mechanical problems will
be realised that can be extended to coupled problems in
time-dependent domains applying special methods for grid control,
integration of boundary values and appropriate coupling
mechanisms.
Ceramic plate heat exchangers and catalytic coated ceramic wall reactors as micro reactors for heterogeneously catalysed synthetic reactions
- Runtime
- 3 years (finished)
- Project leader
- Stefan Turek
- Sponsorship
- BMBF
- External partners
- Prof. Dr. David Agar (Universität Dortmund)
- Project members
- Shuren Hysing
- Frank Platte
- Förderkennzeichen (Founding ID)
- BMBF: 03C0348A
- Description
- The intension is to develop ceramic wall reactors and ceramic plate heat exchangers as micro reactors for heterogeneously catalysed gas phase
reactions. By appropriate calibration of the catalytic activity,
diffusive mass transport and heat removal an optimal temperature
distribution can be attained which in turn leads to a significant
increase in performance of the reactor. A general and economical
reactor concept demanding low development efforts is strived for. At
the University of Dortmund (Institute for Applied Mathematics,
Institute of Chemical Engineering, Chair of Reaction Engineering
(TCB)) an optimatisation of the ceramic plate heat exchangers with
respect to reaction and flow is done appyling CFD simulations. Both
types of ceramical setups are designed and crafted at the Hermsdorfer
Institute for Technical Ceramics. Subsequently, the reactors are
wash-coated by OMG, their performance is studied at the University of
Dortmund (TCB). Numerous companies in the field of chemical industry
have already evinced their interest in introducing these novel reactor
designs.
Analysis and Postprocessing of Space-Time Compressed Flow Computations
- Runtime
- 2 years; 2 years (finished)
- Project leader
- Stefan Turek
- Sponsorship
- DFG
- External partners
- Prof. Dr. Martin Rumpf (Universität Bonn)
- Project members
- Jens Acker
- Förderkennzeichen (Founding ID)
- DFG (SPP 1114): TU 102/7-1; TU 102/7-2
- Description
- Postprocessing of nonstationary flow data requires significant effort concerning the involved mathematical methods and the algorithmical tools. Especially in case of multi-scale, complex phenomena in 3D fluid dynamics one faces various difficulties. The typically enormous amount of considered data prevents a simultaneously handling of a sufficiently large part of the data in space and time. Standard tools for visualization are unable to support an intuitive understanding of the underlying phenomena. In fact they often lead to visual clutter. Instead of a time consuming manual data exploration with simple graphic tools, automatic feature extraction methods would be helpful.
We will study and implement suitable compressing methods based on stable time stepping schemes and space-time adaptive error control to reduce the amount of data considerable. Furthermore, we will apply image processing methodology to appropriately visualize complex timedependent flows and to extract important flow patterns. Thus, multi-scale methods will be considered, which naturally support a scale of data resolutions, ranging either from fine to coarse flow visualization or from many detailed features to only a few extracted, essential features. Furthermore, especially for problems with weaker dynamics (non turbulent flows), modern numerical methods allow significantly large time steps. In the postprocessing a simple interpolation turns out to be not the appropriate solution. We will consider image matching methods as a new approach to interpolate time steps of the flow simulation for animation purposes. Here a suitable balance between interactive performance and accuracy has to be found. Finally the developed visualization and analysis tools will be incorporated in a unique frame together with the numerical flow solvers.
- Publications
- Kashid, M.; Gerlach, I.; Goetz, S.; Franzke, J.; Acker, J.; Platte, F.; Agar, D.; Turek, S.: Internal circulation within the liquid slugs of liquid-liquid slug flow capillary microreactor, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 278, Fakultät für Mathematik, TU Dortmund, 278, 2004 [PDF]
- Turek, S.; Acker, J.; Rumpf, M.: Analysis and Postprocessing of Space-Time Compressed Flow Computation, DFG Evaluierung SP 1114 18. - 19. April 2005, 2005 [PDF]
- Kashid, M.; Gerlach, I.; Goetz, S.; Franzke, J.; Acker, J.; Platte, F.; Agar, D.; Turek, S.: Internal Circulation within the Liquid Slugs of a Liquid-Liquid Slug-Flow Capillary Microreactor, Ind. Eng. Chem. Res, 44, 5003-5010, 2005
Efficient FEM discretisations and multi grid solvers for multi-phase flows with special consideration of bubble column reactors
- Runtime
- 2 years; 2 years (finished)
- Project leader
- Stefan Turek
- Sponsorship
- DFG
- External partners
- Juniorprof. Dr. Dmitri Kuzmin (Universität Dortmund)
- Project members
- Pavel Kotalik
- Otto Mierka
- Förderkennzeichen (Founding ID)
- DFG (NV): TU 102/2-1; TU 102/2-3
- Description
- The intention of this project is the extension of the already
implemented highly efficient components for the numerical
simulation of single-phase incompressible flows in 2D/3D to cases
of multi-phase configurations. The numerical approaches for the
incompressible Navier-Stokes equations developed and realised so
far within the software package FeatFlow (special non-conforming
FEM discretisations with upwind / streamline-diffusion
stabilisation, semi-adaptive grids in space, fully implicit time
stepping techniques with adaptive time stepping), Pressure Schur
Complement methods for saddle point problems, rigorously applied
multi grid methods) will be transferred to two-phase flow in
bubble column reactors. One of the main issues will be to tie up
the coupled systems of (nonlinear) transport-dominated equations
for the gaseous phase and the chemical reactions with mass
exchange with the Navier-Stokes part for the fluid such that the
individual subproblems can be approximated with sufficient
accuracy and solved efficiently. The coupled system as a whole
should be numerically simulated at a high total efficiency, too.
The aim is to be able to perform numerical multiphase simulations
with an accuracy that is comparable to those done already with
FeatFlow for complex nonstationary flows.
- Publications
- Turek, S.; Kuzmin, D.: Algebraic flux correction III. incompressible flow problems, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 270, Fakultät für Mathematik, TU Dortmund, 270, 2004 [PDF]
- Kuzmin, D.; Turek, S.: Numerical simulation of turbulent bubbly flows, Proceedings of the Third International Symposium on Two-Phase Flow Modeling and Experimentation, nn, Pisa, 2004, 2004 [PDF]
- Kuzmin, D.; Turek, S.: Finite element discretization tools for gas-liquid flows, Sommerfeld, M., Heat and Mass Transfer, VIII, 191-201, Bubbly Flows - Analysis, Modelling and Calculation, Springer, ISBN: 3-540-40791-X, 2004
- Kuzmin, D.; Turek, S.; Haario, H.: Finite element simulation of turbulent bubbly flows in gas-liquid reactors, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 298, Fakultät für Mathematik, TU Dortmund, 298, 2005 [PDF]
- Kuzmin, D.; Löhner, R.; Turek, S.: Flux-Corrected Transport, Scientific Computation, Springer, Subtitle: Principles, Algorithms and Applications, 3-540-23730-5, 2005
- Mierka, O.; Kuzmin, D.; Turek, S.: Finite element simulation of turbulent bubbly flows, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 317, Fakultät für Mathematik, TU Dortmund, 317, 2006 [PDF]
- Kuzmin, D.; Mehrmann, V.; Schlauch, S.; Sokolov, A.; Turek, S.: Population Balances Coupled with the CFD-Code FeatFlow, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 324, Fakultät für Mathematik, TU Dortmund, 324, 2006 [PDF]
- Platte, F.; Mierka, O.; Hysing, S.; Kashid, M.; Turek, S.: Mathematical modeling and numerical simulations of reactive flows in channels, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 346, Fakultät für Mathematik, TU Dortmund, 346, 2007 [PDF]
- Kuzmin, D.; Mierka, O.; Turek, S.: On the implementation of the k-epsilon turbulence model in incompressible flow solvers based on a finite element discretization , IJCSM, 2/3/4, 193-206, 2007
- Kuzmin, D.; Mierka, O.; Turek, S.: On the implementation of the k-epsilon turbulence model in incompressible flow solvers based on a finite element discretization , Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 345, Fakultät für Mathematik, TU Dortmund, 345, 2007 [PDF]
- Bayraktar, E.; Mierka, O.; Platte, F.; Kuzmin, D.; Turek, S.: Modeling and numerical aspects of population balance equations in gas/liquid-liquid two phase flows, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 374, Fakultät für Mathematik, TU Dortmund, 374, 2008 [PDF]
- Bayraktar, E.; Mierka, O.; Platte, F.; Kuzmin, D.; Turek, S.: Numerical Aspects and Implementation of Population Balance Equations Coupled with Turbulent Fluid Dynamics, Computers and Chemical Engineering, 35, 2204-2217 , DOI information: 10.1016/j.compchemeng.2011.04.001 , 2008
- Bayraktar, E.; Mierka, O.; Platte, F.; Kuzmin, D.; Turek, S.: Numerical Aspects and Implementation of Population Balance Equations Coupled with Turbulent Fluid Dynamics, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 423, Fakultät für Mathematik, TU Dortmund, 423, 2011 [PDF]
- Turek, S.; Kuzmin, D.: Algebraic Flux Correction III Incompressible Flow Problems, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 440, Fakultät für Mathematik, TU Dortmund, 440, 2011 [PDF]
- Kuzmin, D.; Löhner, R.; Turek, S.: Flux-Corrected Transport, Springer, 2nd edition, 978-94-077-4037-2, 2012
Numerical simulation of hetero-homogeneously coupled reactions in high temperature catalysis in a reverse flow reactor
- Runtime
- 2 years; 1 year (finished)
- Project leader
- Stefan Turek
- Sponsorship
- DFG
- External partners
- Prof. Dr. David Agar (Universität Dortmund)
- Project members
- Frank Platte
- Förderkennzeichen (Founding ID)
- DFG (NV): AG 26/4-1; TU 102/14-1
- Description
- Intention of the project is modelling, simulation and analysis of a
reverse flow reactor (RFR) vicariously for an efficient nonstationary
fixed bed process. In high temperature catalysis (> 700°C) additional
homogeneous-thermal reactions are possible which - as a general rule
- go on more intense and lead to different reaction pathways. As an
example for high temperature catalysis the disintegration of laughing
gas in an RFR is studied. A better understanding of the coupled
reactions on microscopic scale from a kinetic viewpoint as well as the
influence on the formation of macroscopic profiles are of interest for
safety and process engineering. The simulation of transient behaviour
of nonstationary processes which lead to cyclic steady-state is
usually performed applying costly dynamical simulations. In order to
rigorously analyse and design such a process, one only needs to know
the cyclic steady-states. These can be derived a lot more efficiently
using direct methods. The aim is to develop a flexible and efficient
direct computational method - with special respect to forthcoming
2D/3D applications - by the help of modern mathematical techniques
like adaptivity in space and time, fast solvers of multigrid type and
hardware-oriented implementation techniques.
- Publications
- Platte, F.; Kuzmin, D.; Fredebeul, C.; Turek, S.: Novel simulation approaches for cyclic-steady-state fixed-bed processes exhibiting sharp fronts and shocks, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 272, Fakultät für Mathematik, TU Dortmund, 272, 2004 [PDF]
- Platte, F.; Kuzmin, D.; Fredebeul, C.; Turek, S.: Novel simulation approaches for cyclic steady-state fixed-bed processes exhibiting sharp fronts and shocks, International Series of Numerical Mathematics, 151, 207-223, Trends and Applications in Constructive Approximation, editors, M. G. de Bruin, D. H. Mache & J. Szabados, Birkhäuser Verlag Basel/Switzerland, 2005
- Nalpantidis, K.; Platte, F.; Agar, D.; Turek, S.: Elucidation of hybrid N2O decomposition using axially structured catalyst in reverse flow reactor, Chemical Engineering Science, 61, 10, 3176-3185, 2006
- Lindner, F.; Platte, F.; Agar, D.; Turek, S.: Effect of intermediated chemical compounds NO on the hybrid N2O decomposition under periodical flow reversal conditions, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 348, Fakultät für Mathematik, TU Dortmund, 348, 2007 [PDF]
Development, analysis and realization of alternative numerical discretization techniques and efficient solvers for the Lattice Boltzmann method
- Runtime
- 2 years; 1 year (finished)
- Project leader
- Stefan Turek
- Sponsorship
- DFG
- Project members
- Thomas Hübner
- Förderkennzeichen (Founding ID)
- DFG (NV innerhalb des Paketantrages "Lattice Boltzmann Methoden: Analysis, Numerik und Anwendungen"; Sprecher: Prof. Krafczyk, Braunschweig): TU 102/16-1; TU 102/16-2
- Description
- The general aim of the current research is the development, analysis and realization of alternative numerical discretization techniques and efficient solvers for the Lattice Boltzmann method (LBM) with an application to incompressible, resp., weakly compressible flow problems. Special finite difference schemes on unstructured grids are the basis to investigate accurate and robust discretizations of characteristic upwinding type for the LBM, which yield lower triangular matrices if a special renumbering is applied to the unknowns. In combination with limiters on arbitrary meshes, this approach additionally yields monotone and non-oscillating solutions.
Fully-implicit discretizations in time are analysed as well as a direct stationary approach. Possible variants of operator splitting but also Newton-like methods are applied to the resulting nonlinear and coupled algebraic systems, while the linear subproblems are solved using Krylov-space and multigrid methods with special preconditioning techniques.
Altogether, the aim is to apply modern numerics for partial differential equations to the Lattice Boltzmann equations.
Realisation of fast solvers and efficient data structures for problems with fluid-structure-interaction
- Runtime
- 2 years; 1 year (finished)
- Project leader
- Stefan Turek
- Sponsorship
- DFG
- External partners
- PD Dr. Franz-Theo Suttmeier (Trondheim)
- Project members
- Jaroslav Hron
- Förderkennzeichen (Founding ID)
- DFG (FOR 493/1-1+/1-2): TU 102/11-1; TU 102/11-2
- Description
- The intention is the combination and enhancement of existing
efficient components for the numerical simulation of
nonstationary, incompressible flows ad deformation of structures
for problems with fluid-structure-interaction. Implicit solver
components based on FEM discretisations in space and time as well
as multi grid techniques are to be used to allow a smooth
transition between weak and strong coupling of flow- and
structure-mechanical subproblems and, by this, to allow adaptive
control. A methodical study of different coupling mechanisms in
the framework of Pressure Schur Complement methods with multi grid
acceleration will be central. In addition, we will concentrate on
the generation of `common` (time depending) grids with properly
chosen efficient solvers and stable discretisation techniques.
Approximation accuracy will be increased by local macro adaptivity
and adjustment of grid points. By employing generalised local
tensor product grids and appropriate data structures and
implementation techniques both high numerical accuracy /
efficiency and high computing power per processor node will be
accomplished; simultaneously, a `natural` port of the code to
vector- and parallel computers will be rendered possible.
- Publications
- Hron, J.; Turek, S.: A monolithic FEM/Multigrid solver for ALE formulation of fluid structure interaction with application in biomechanics, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 311, Fakultät für Mathematik, TU Dortmund, 311, 2006 [PDF]
- Turek, S.; Hron, J.: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 312, Fakultät für Mathematik, TU Dortmund, 312, 2006 [PDF]
- Hron, J.; Turek, S.: A monolithic FEM solver for an ale formulation of fluid-structure interaction with configuration for numerical benchmarking, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 321, Fakultät für Mathematik, TU Dortmund, 321, 2006 [PDF]
- Turek, S.; Hron, J.: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow, Bungartz, H., Schäfer, M., Lecture Notes in Computational Science and Engineering, 53, 371-385, Fluid-Structure Interaction - Modelling, Simulation, Optimization, Springer, ISBN 3-540-34595-7, 2006
- Hron, J.; Turek, S.: A monolithic FEM/multigrid solver for ALE formulation of fluid structure interaction with application in biomechanics, Bungartz, H., Schäfer, M., Lecture Notes in Computational Science and Engineering, 53, 146-170, Fluid-Structure Interaction - Modelling, Simulation, Optimization, Springer, ISBN 3-540-34595-7, 2006
- Turek, S.; Hron, J.: A monolithic FEM solver for an ALE formulation of fluid-structure interaction with configuration for numerical benchmarking, Wesseling, P., Onate, E., Periaux, J., 176, Books of Abstracts European Conference on Computational Fluid Dynamics, nn, Eccomas CFD 2006, 2006
- Razzaq, M.; Hron, J.; Turek, S.: Numerical simulation of laminar incompressible fluid-structure interaction for elastic material with point constraints, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 366, Fakultät für Mathematik, TU Dortmund, 366, 2008 [PDF]
- Göddeke, D.; Wobker, H.; Strzodka, R.; Mohd-Yusof, J.; McCormick, P.; Turek, S.: Co-processor acceleration of an unmodified parallel solid mechanics code with FEASTGPU, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 367, Fakultät für Mathematik, TU Dortmund, 367, 2008 [PDF]
- Razzaq, M.; Hron, J.; Turek, S.: Numerical simulation of laminar incompressible fluid-structure interaction for elastic material with point constraints, Rannacher, R., Sequeira, A., 451-472, Advances in Mathematical Fluid Mechanics-Dedicated to Giovanni Paolo Galdi on the Occasion of his 60th Birthday, Springer, ISBN 978-3-642-04067-2, 2008
- Razzaq, M.; Turek, S.; Hron, J.: Numerical simulation of laminar incompressible fluid-structure interaction with application to aneurysm hemodynamics, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 385, Fakultät für Mathematik, TU Dortmund, 385, 2009 [PDF]
- Göddeke, D.; Wobker, H.; Strzodka, R.; Mohd-Yusof, J.; McCormick, P.; Turek, S.: Co-processor acceleration of an unmodified parallel solid mechanics code with FEASTGPU, International Journal of Computational Science and Engineering, 4, 4, 254-269, DOI: 10.1504/IJCSE.2009.029162, 2009
- Turek, S.; Hron, J.; Madlik, M.; Razzaq, M.; Wobker, H.; Acker, J.: Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with application to hemodynamics, Bungartz, H., Mehl, M., Schäfer, M., Lecture Notes in Computational Science and Engineering, 73, 193-220, Fluid-Structure Interaction II: Modelling, Simulation, Optimisation, Springer, doi 10.1007/978-3-642-14206-2, 2010
- Turek, S.; Hron, J.; Razzaq, M.; Schäfer, M.: Numerical Benchmarking of Fluid-Structure Interaction: A comparison of different discretization and solution approaches, Bungartz, H., Mehl, M., Schäfer, M., Lecture Notes in Computational Science and Engineering, 73, 413-424, Fluid-Structure Interaction II: Modelling, Simulation, Optimisation, Springer, doi 10.1007/978-3-642-14206-2, 2010
- Turek, S.; Hron, J.; Madlik, M.; Razzaq, M.; Wobker, H.; Acker, J.: Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with application to hemodynamics, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 403, Fakultät für Mathematik, TU Dortmund, 403, 2010 [PDF]
- Turek, S.; Hron, J.; Razzaq, M.; Wobker, H.; Schäfer, M.: Numerical Benchmarking of Fluid-Structure Interaction: A comparison of different discretization and solution approaches, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 405, Fakultät für Mathematik, TU Dortmund, 405, 2010 [PDF]
Design, Analysis and Realisation of Mathematical Methods and High Performance Computing Techniques
- Runtime
- 2 years; 1 year; 2 years (finished)
- Project leader
- Stefan Turek
- Sponsorship
- DFG
- External partners
- Prof. Dr. Heinrich Müller (Universität Dortmund)
- Project members
- Dominik Göddeke
- Förderkennzeichen (Founding ID)
- DFG (NV): TU 102/22-1; TU 102/22-2
- Description
- This project addresses fundamental issues in the interdisciplinary field between numerical mathematics, scientific computing and computer graphics. Methods, techniques and algorithms from these research areas are combined, transfered inbetween these domains, reformulated, and extended. The goal of the applied-for project is the development, analysis and realisation of novel simulation techniques, based on modern mathematical methods (finite element/difference discretisations, multigrid solvers, domain decomposition, adaptive mesh deformation) that at the same time exploit a substantial fraction of the performance offered by data-stream based architectures (GPU, PPU, Cell processors). Based on the development of the (parallel) FEM software package FEAST with its special hierarchical data and matrix structures, data-stream-based architectures shall be used for the efficient solution of subproblems. FEAST will be responsible for the hierarchical decomposition of the global problems into local subproblems (and the reverse combination of subdomain solutions/contributions into a global one), exploiting all advantages of modern programming languages, parallel software concepts and particularities of modern CPUs. Data-stream based architectures shall be used as special 'numerical co-processors'. Similar to already-successful GPGPU (general purpose computation using graphics hardware) activities, base components in the field of numerical linear algebra, in particular highly-efficient multigrid solvers for PDEs, shall be developed and realised in the form of libraries. These libraries will solve such subproblems with very high numerical efficiency, simultaneously achieving several GFLOP/s worth of performance. Our research will focus mostly on aspects of accuracy, efficiency, flexibility and robustness, and requires both mathematical and software-technical foundation research for general data-stream-based architectures.
- Publications
- Turek, S.; Göddeke, D.: Abschlussbericht zum DFG-Forschungsprojekt TU 102/22-2, Projektberichte Nummer TU 102/22-2, Lehrstuhl III, Fakultät für Mathematik, TU Dortmund, TU+102%2F22-2, 2011 [PDF]
- Göddeke, D.; Becker, C.; Turek, S.: Integrating GPUs as fast co-processors into the existing parallel FE package FEAST, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 332, Fakultät für Mathematik, TU Dortmund, 332, 2006 [PDF]
- Göddeke, D.; Strzodka, R.; Turek, S.: Performance and accuracy of hardware-oriented native-, emulated- and mixed-precision solvers in FEM simulations, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 334, Fakultät für Mathematik, TU Dortmund, 334, 2006 [PDF]
- Göddeke, D.; Strzodka, R.; Turek, S.: Performance and accuracy of hardware-oriented native-, emulated- and mixed-precision solvers in FEM simulations, International Journal of Parallel, Emergent and Distributed Systems, 22, 4, 221-256, doi: 10.1080/17445760601122076, 2007
- Göddeke, D.; Strzodka, R.; Mohd-Yusof, J.; McCormick, P.; Wobker, H.; Becker, C.; Turek, S.: Using GPUs to improve multigrid solver performance on a cluster, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 353, Fakultät für Mathematik, TU Dortmund, 353, 2007 [PDF]
- Göddeke, D.; Strzodka, R.; Mohd-Yusof, J.; McCormick, P.; Buijssen, S.; Grajewski, M.; Turek, S.: Exploring weak scalability for FEM calculations on a GPU-enhanced cluster, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 354, Fakultät für Mathematik, TU Dortmund, 354, 2007 [PDF]
- Göddeke, D.; Strzodka, R.; Mohd-Yusof, J.; McCormick, P.; Buijssen, S.; Grajewski, M.; Turek, S.: Exploring weak scalability for FEM calculations on a GPU-enhanced cluster, Parallel Computing, 33, 10--11, 685-699, doi: 10.1016/j.parco.2007.09.002, 2007
- Göddeke, D.; Strzodka, R.; Mohd-Yusof, J.; McCormick, P.; Wobker, H.; Becker, C.; Turek, S.: Using GPUs to improve multigrid solver performance on a cluster, International Journal of Computational Science and Engineering, 4, 1, 36-55, doi: 10.1504/IJCSE.2008.021111, 2008
- Buijssen, S.; Wobker, H.; Göddeke, D.; Turek, S.: FEASTSolid and FEASTFlow: FEM applications exploiting FEAST`s HPC technologies, Nagel, W., Resch, M., Transactions of the High Performance Computing Center Stuttgart (HLRS) 2008, 425-440, High Performance Computing in Science and Engineering 2008, Springer, doi: 10.1007/978-3-540-88303-6_30, 2008
- Göddeke, D.; Wobker, H.; Strzodka, R.; Mohd-Yusof, J.; McCormick, P.; Turek, S.: Co-processor acceleration of an unmodified parallel solid mechanics code with FEASTGPU, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 367, Fakultät für Mathematik, TU Dortmund, 367, 2008 [PDF]
- Buijssen, S.; Wobker, H.; Göddeke, D.; Turek, S.: FEASTSolid and FEASTFlow: FEM applications exploiting FEAST`s HPC technologies, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 371, Fakultät für Mathematik, TU Dortmund, 371, 2008 [PDF]
- Göddeke, D.; Strzodka, R.: Performance and accuracy of hardware-oriented native-, emulated- and mixed-precision solvers in FEM simulations (Part 2: Double Precision GPUs), Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 370, Fakultät für Mathematik, TU Dortmund, 370, 2008 [PDF]
- Köster, M.; Göddeke, D.; Wobker, H.; Turek, S.: How to gain speedups of 1000 on single processors with fast FEM solvers - Benchmarking numerical and computational efficiency, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 382, Fakultät für Mathematik, TU Dortmund, 382, 2008 [PDF]
- Göddeke, D.; Wobker, H.; Strzodka, R.; Mohd-Yusof, J.; McCormick, P.; Turek, S.: Co-processor acceleration of an unmodified parallel solid mechanics code with FEASTGPU, International Journal of Computational Science and Engineering, 4, 4, 254-269, DOI: 10.1504/IJCSE.2009.029162, 2009
- van Dyk, D.; Geveler, M.; Mallach, S.; Ribbrock, D.; Göddeke, D.; Gutwenger, C.: HONEI: A collection of libraries for numerical computations targeting multiple processor architectures, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 391, Fakultät für Mathematik, TU Dortmund, 391, 2009 [PDF]
- van Dyk, D.; Geveler, M.; Mallach, S.; Ribbrock, D.; Göddeke, D.; Gutwenger, C.: HONEI: A collection of libraries for numerical computations targeting multiple processor architectures, Computer Physics Communications, 180, 12, 2534-2543, DOI: 10.1016/j.cpc.2009.04.018, 2009
- Geveler, M.; Ribbrock, D.; Göddeke, D.; Turek, S.: Lattice-Boltzmann Simulation of the Shallow-Water Equations with Fluid-Structure Interaction on Multi- and Manycore Processors, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 400, Fakultät für Mathematik, TU Dortmund, 400, 2009 [PDF]
- Turek, S.; Göddeke, D.; Buijssen, S.; Wobker, H.: Hardware-Oriented Multigrid Finite Element Solvers on GPU-Accelerated Clusters, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 406, Fakultät für Mathematik, TU Dortmund, 406, 2010 [PDF]
- Ribbrock, D.; Geveler, M.; Göddeke, D.; Turek, S.: Performance and accuracy of Lattice-Boltzmann kernels on multi- and manycore architectures, Sloot, P., Dick van Albada, G., Dongarra, J., Procedia Computer Science, 1, 1, 239 - 247, International Conference on Computational Science (ICCS`10), Elsevier, doi: 10.1016/j.procs.2010.04.027, 2010
- Geveler, M.; Ribbrock, D.; Göddeke, D.; Turek, S.: Lattice-Boltzmann Simulation of the Shallow-Water Equations with Fluid-Structure Interaction on Multi- and Manycore Processors, Keller, R., Kramer, D., Weiß, J., Lecture Notes in Computer Science, 6310, 92-104, Facing the Multicore Challenge, Springer, 2010
- Göddeke, D.; Strzodka, R.: Cyclic Reduction Tridiagonal Solvers on GPUs Applied to Mixed Precision Multigrid, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 402, Fakultät für Mathematik, TU Dortmund, 402, 2010 [PDF]
- Turek, S.; Göddeke, D.; Becker, C.; Buijssen, S.; Wobker, H.: FEAST -- Realisation of hardware-oriented Numerics for HPC simulations with Finite Elements, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 401, Fakultät für Mathematik, TU Dortmund, 401, 2010 [PDF]
- Turek, S.; Göddeke, D.; Becker, C.; Buijssen, S.; Wobker, H.: FEAST -- Realisation of hardware-oriented Numerics for HPC simulations with Finite Elements, Concurrency and Computation: Practice and Experience, 6, 2247-2265, Special Issue Proceedings of ISC 2008. doi:10.1002/cpe.1584, 2010
- Ribbrock, D.; Geveler, M.; Göddeke, D.; Turek, S.: Performance and Accuracy of Lattice-Boltzmann Kernels on Multi- and Manycore Architectures, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 404, Fakultät für Mathematik, TU Dortmund, 404, 2010 [PDF]
- Göddeke, D.; Strzodka, R.: Cyclic Reduction Tridiagonal Solvers on GPUs Applied to Mixed Precision Multigrid, IEEE Transactions on Parallel and Distributed Systems, 22, 1, 22-32, doi: 10.1109/TPDS.2010.61, 2011
- Geveler, M.; Ribbrock, D.; Göddeke, D.; Zajac, P.; Turek, S.: Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs , Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 419, Fakultät für Mathematik, TU Dortmund, 419, 2011 [PDF]
- Geveler, M.; Ribbrock, D.; Mallach, S.; Göddeke, D.: A Simulation Suite for Lattice-Boltzmann based Real-Time CFD Applications Exploiting Multi-Level Parallelism on modern Multi- and Many-Core Architectures , Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 420, Fakultät für Mathematik, TU Dortmund, 420, 2011 [PDF]
- Geveler, M.; Ribbrock, D.; Göddeke, D.; Zajac, P.; Turek, S.: Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs, Ivànyi, P., Topping, B., 22, Second International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, Civil-Comp Press, Young Researcher Best Paper Award (doi: 10.4203/ccp.95.22), 2011
- Geveler, M.; Ribbrock, D.; Göddeke, D.; Zajac, P.; Turek, S.: Towards a complete FEM-based simulation toolkit on GPUS: Unstructured Grid Finite Element Geometric Multigrid solvers with strong smoothers based on Sparse Approximate Inverses, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 434, Fakultät für Mathematik, TU Dortmund, 434, 2011 [PDF]
- Geveler, M.; Ribbrock, D.; Göddeke, D.; Zajac, P.; Turek, S.: Towards a complete FEM-based simulation toolkit on GPUS: Unstructured Grid Finite Element Geometric Multigrid solvers with strong smoothers based on Sparse Approximate Inverses, Comp. Fluids, 80, 327-332, doi: 10.1016/j.compfluid.2012.01.025, 2013
Efficient solvers for generalized incompressible flow problems with special emphasis on pressure Schur complement techniques for linearized Navier-Stokes equations and extensions
- Runtime
- 2 years, 1 year (finished)
- Project leader
- Stefan Turek
- Sponsorship
- DFG/RFBR
- External partners
- Prof. Dr. Maxim A. Olshanskii (Moscow M. V. Lomonosov State University)
- Project members
- Abderrahim Ouazzi
- Förderkennzeichen (Founding ID)
- DFG (NV; RFBR): TU 102/21-1
- Description
- In recent years, a large amount of work has been devoted to the problem of solving large (linear) systems in saddle point form. The reason for this interest is the fact, that such problems arise in a wide variety of technical and scientific applications. In particular, the increasing popularity of mixed finite element methods in engineering fields such as field and solid mechanics has been a major source of such saddle point systems, as they typically arise from the discretization of incompressible flow problems, for instance described by the Navier-Stokes equations. Because of the ubiquitous nature of saddle point systems, a wide literature exists on the discretization aspect and the numerical solution of such systems for many particular applications as well as in general form. A recent comprehensive survey [M. Benzi, G. H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numerica 2005, pp. 1 - 137] can serve as an introduction to the subject, where one can find enormous pointers to the literature on numerics for saddle point problems. This survey shows that the case of stationary and time-dependent Stokes problems has been more or less solved, while the development of efficient solvers for linearized Navier-Stokes equations including convective parts (Oseen equations) and particularly nonlinear viscosity (non-newtonian, resp., granular flow), and moreover also for extensions which couple the Navier-Stokes equations with additional quantities, is still a challenging and important task in the field of numerical flow simulation.
In this common project, we will combine the special knowledge from each of both research groups, regarding theoretical as well as algorithmic aspects for the numerical treatment of incompressible fluids, with the aim to develop, to analyse and to implement improved solution strategies. In particular, we will concentrate on flow problems with non-constant, resp., nonlinear viscosity for small up to medium Re numbers as they typically arise in micro devices and milli-reactors. The main solution methodology will be based on pressure Schur complement techniques, which are either constructed via globally defined approximate preconditioners in the pressure space only, or which are based on patchwisely defined operators including the pressure Schur complement of the complete flow equations, but in a local sense. These approaches will be applied to saddle point problems arising from the FEM discretization with stable conforming as well as nonconforming Stokes elements, including various polynomial spaces. We will theoretically analyse the developed solution methodology and realize the solver components in the FEM package FEATFLOW which directly allows a validation and evaluation for a wide class of prototypical flow configurations in the field of chemical engineering applications.
- Publications
- Sokolov, A.; Olshanskii, M.; Turek, S.: A discrete projection method for incompressible viscous flow with coriolis force, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 352, Fakultät für Mathematik, TU Dortmund, 352, 2007 [PDF]
- Sokolov, A.; Turek, S.; Olshanskii, M.: Numerical study of a discrete projection method for rotating incompressible flows, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 357, Fakultät für Mathematik, TU Dortmund, 357, 2007 [PDF]
- Sokolov, A.; Turek, S.; Olshanskii, M.: Numerical study of a discrete projection method for rotating incompressible flows, Electronic Transactions on Numerical Analysis , 32, 49-62, 2008
- Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.: A monolithic FEM approach for non-isothermal incompressible viscous flows, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 359, Fakultät für Mathematik, TU Dortmund, 359, 2008 [PDF]
- Olshanskii, M.; Sokolov, A.; Turek, S.: Error analysis of a projection method for the Navier--Stokes equations with coriolis force, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 368, Fakultät für Mathematik, TU Dortmund, 368, 2008 [PDF]
- Finn, R.; Ouazzi, A.; Turek, S.: Maximum principle and gradient estimates for stationary solutions of the Navier--Stokes equations; a partly experimental investigation, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 369, Fakultät für Mathematik, TU Dortmund, 369, 2008 [PDF]
- Sokolov, A.; Olshanskii, M.; Turek, S.: A discrete projection method for incompressible viscous flow with Coriolis force, Comput. Meth. Appl. Mech. Eng., 197, 51-52, 4512--4520, 2008
- Olshanskii, M.; Sokolov, A.; Turek, S.: Error analysis of a projection method for the Navier--Stokes equations with coriolis force, Journal of Mathematical Fluid Mechanics, 11-+, doi: 10.1007/s00021-009-0299-0; http://adsabs.harvard.edu/abs/2009JMFM..tmp...11O; Provided by the SAO/NASA Astrophysics Data System, 2009
- Kheiripour Langroudi, M.; Turek, S.; Ouazzi, A.; Tardos, G.: An investigation of frictional and collosional powder flows using unified constitutive equation, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 387, Fakultät für Mathematik, TU Dortmund, 387, 2009 [PDF]
- Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.: Finite element discretization and Newton-multigrid solution techniques for the log-conformation reformulation (LCR) of viscoelastic flow problems, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 396, Fakultät für Mathematik, TU Dortmund, 396, 2009 [PDF]
- Damanik, H.; Ouazzi, A.; Hron, J.; Turek, S.: A monolithic FEM approach for temperature and shear dependent viscosity in viscoelastic flow, Ambrosio, ., 7th EUROMECH Solid Mechanics Conference, ACM Press, 2009
- Ouazzi, A.; Damanik, H.; Hron, J.; Turek, S.: FEM techniques for the LCR reformulation of viscoelastic flow problems, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 399, Fakultät für Mathematik, TU Dortmund, 399, 2009 [PDF]
- Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.: A monolithic FEM approach for the log-conformation reformulation (LCR) of viscoelastic flow problems, J. Non-Newtonian Fluid Mech., 19-20, 165, 1105-1113, doi:10.1016/j.jnnfm2010.05.008, 2010
- Finn, R.; Ouazzi, A.; Turek, S.: Maximum principle and gradient estimates for stationary solutions of the Navier--Stokes equations; a partly experimental investigation, Rannacher, R., Sequeira, A., Advances in Mathematical Fluid Mechanics-Dedicated to Giovanni Paolo Galdi on the Occasion of his 60th Birthday, Springer, doi: 10.1007/978-3-642-04068-9, 2010
- Ouazzi, A.; Damanik, H.; Hron, J.; Turek, S.: FEM Techniques for the LCR Reformulation of Viscoelastic Flow Problems, Enumath , Part+2, 747-754, Numerical Mathematics and Advanced Applications 2009 2010, Springer, 2010
- Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.: Monolithic Newton-multigrid solution techniques for incompressible nonlinear flow models, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 426, Fakultät für Mathematik, TU Dortmund, 426, 2011 [PDF]
- Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.: Monolithic Newton-multigrid solution techniques for incompressible nonlinear flow models, Int. J. Numer. Meth. Fluids, Volume 71, Issue 2, 208-222, 2013
Numerical techniques for incompressible particulate flows
- Runtime
- 3 years (finished)
- Project leader
- Stefan Turek
- Sponsorship
- DFG
- External partners
- Prof. Dr. Peter Walzel (Universität Dortmund); Prof. Dr. Gudrun Thäter (Universität Dortmund); Prof. Dr. Heribert Blum (Universität Dortmund); Prof. Dr. David Agar (Universität Dortmund)
- Project members
- Sven Buijssen
- Förderkennzeichen (Founding ID)
- DFG (NV innerhalb des Paketantrages 178 "Modellgestützte Entwicklung fluider Prozesse mit disperser Phase"; Sprecher: Prof. Turek, Dortmund): TU 102/27-1
- Description
- The aims of this research projects are related to the design of efficient numerical methods for the simulation of two-way coupled (interaction of the solid particles with the surrounding laminar fluid flow) particulate flow problems. Direct numerical simulation of particulate flows involves the computation of the hydrodynamic forces acting on the surface of each particle present in the flow in order to determine the
motion of mutually colliding particles, which subsequently backinfluence the motion of the surrounding fluid. In order to design an accurate and efficient numerical prediction tool enabling the simulation of large number of particles resolved in the flow modern numerical techniques (high resolution schemes, dynamic grid deformation technique, (semi-) implicit time stepping, adaptive coupling and control mechanisms, optimized multigrid solvers, parallelization) are to be implemented. From the application point of view the main emphasis will be laid on polymerisation processes and on processes dealing with suspensions. The resulting simulation tool shall offer itself as a "numerical laboratory tool" to perform "experiments" and as a tool for achieving new benchmark simulation results so to contribute for validation purposes to the engineering community.
- Publications
- Hysing, S.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S.; Tobiska, L.: Proposal for quantitative benchmark computations of bubble dynamics, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 351, Fakultät für Mathematik, TU Dortmund, 351, 2007 [PDF]
- Buijssen, S.; Wobker, H.; Göddeke, D.; Turek, S.: FEASTSolid and FEASTFlow: FEM applications exploiting FEAST`s HPC technologies, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 371, Fakultät für Mathematik, TU Dortmund, 371, 2008 [PDF]
- Buijssen, S.; Wobker, H.; Göddeke, D.; Turek, S.: FEASTSolid and FEASTFlow: FEM applications exploiting FEAST`s HPC technologies, Nagel, W., Resch, M., Transactions of the High Performance Computing Center Stuttgart (HLRS) 2008, 425-440, High Performance Computing in Science and Engineering 2008, Springer, doi: 10.1007/978-3-540-88303-6_30, 2008
- Hysing, S.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S.; Tobiska, L.: Quantitative benchmark computations of two-dimensional bubble dynamics, Int. J. Num. Meth. Fluids, 60, 11, 1259-1288, doi: 10.1002/fld.1934, 2009 [PDF]
- Turek, S.; Mierka, O.; Hysing, S.; Kuzmin, D.: A high order 3D FEM-Level Set approach for multiphase flow with application to monodisperse droplet generation, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 411, Fakultät für Mathematik, TU Dortmund, 411, 2010 [PDF]
- Turek, S.; Göddeke, D.; Becker, C.; Buijssen, S.; Wobker, H.: FEAST -- Realisation of hardware-oriented Numerics for HPC simulations with Finite Elements, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 401, Fakultät für Mathematik, TU Dortmund, 401, 2010 [PDF]
- Turek, S.; Göddeke, D.; Becker, C.; Buijssen, S.; Wobker, H.: FEAST -- Realisation of hardware-oriented Numerics for HPC simulations with Finite Elements, Concurrency and Computation: Practice and Experience, 6, 2247-2265, Special Issue Proceedings of ISC 2008. doi:10.1002/cpe.1584, 2010
- Turek, S.; Göddeke, D.; Buijssen, S.; Wobker, H.: Hardware-Oriented Multigrid Finite Element Solvers on GPU-Accelerated Clusters, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 406, Fakultät für Mathematik, TU Dortmund, 406, 2010 [PDF]
- Hysing, S.: Mixed finite element level set method for numerical simulation of immiscible fluids, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 425, Fakultät für Mathematik, TU Dortmund, 425, 2011 [PDF]
- Hysing, S.: Evaluation of CFD codes on a two-phase flow benchmark reference test case, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 427, Fakultät für Mathematik, TU Dortmund, 427, 2011 [PDF]
- Turek, S.; Mierka, O.; Hysing, S.; Kuzmin, D.: Numerical study of a high order 3D FEM-Level Set approach for immiscible flow simulation, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 437, Fakultät für Mathematik, TU Dortmund, 437, 2011 [PDF]
- Mierka, O.; Damanik, H.; Turek, S.: Numerical simulation of mondisperse droplet generation in nozzles, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 452, Fakultät für Mathematik, TU Dortmund, 452, 2012 [PDF]
- Turek, S.; Mierka, O.; Hysing, S.; Kuzmin, D.: Numerical study of a high order 3D FEM-Level Set approach for immiscible flow simulation, Repin, S., Tiihonen, T., Tuovinen, T., Computational Methods in Applied Sciences, Vol. 27, 65-91, Numerical methods for differential equations, optimization, and technological problems, Springer, ISBN 978-94-007-5287-0, 2013
Level Set methods for incompressible flows with free interfaces
- Runtime
- 3 years (finished)
- Project leader
- Dmitri Kuzmin
- Sponsorship
- DFG
- External partners
- Prof. Dr. Heribert Blum (Universität Dortmund)
- Project members
- Shuren Hysing
- Förderkennzeichen (Founding ID)
- DFG (NV innerhalb des Paketantrages 178 "Modellgestützte Entwicklung fluider Prozesse mit disperser Phase"; Sprecher: Prof. Turek, Dortmund): KU 1530/5-1
- Description
- The aim of the project is to design an adaptive finite element method based simulation tool for incompressible multiphase flows with free boundaries by means of the Level Set approach.
According to the Level Set approach the reconstruction of the interface between the present phases is performed on the basis of the values of the signed distance function whose evolution is described by a scalar transport equation.
Due to the number of subtasks related to the cumbersome implementation of a given front capturing method (reinitialization of the Level Set function, computation of the normals and curvature, reconstruction of the surface, etc.) accurate and reliable benchmark solutions become extremely valuable in order to validate existing or newly developed approaches.
In a variational formulation benchmark configurations shall be tailored to the specific properties of the underlying finite element discretization.
The proposed research activity will be focused on the stabilization of convective terms as well as the interfacial forces.
Additionally, in order to increase the resolution of the interface, grid adaptation techniques are to be introduced.
The developed extension to the software package FeatFlow shall be utilized in basic research related projects as well as in several application projects.
- Publications
- Hysing, S.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S.; Tobiska, L.: Proposal for quantitative benchmark computations of bubble dynamics, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 351, Fakultät für Mathematik, TU Dortmund, 351, 2007 [PDF]
- Hysing, S.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S.; Tobiska, L.: Quantitative benchmark computations of two-dimensional bubble dynamics, Int. J. Num. Meth. Fluids, 60, 11, 1259-1288, doi: 10.1002/fld.1934, 2009 [PDF]
- Kuzmin, D.; Korotov, S.: Goal-oriented a posteriori error estimates for transport problems, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 386, Fakultät für Mathematik, TU Dortmund, 386, 2009 [PDF]
- Cai, M.; Turek, S.: Numerical Studies of Time Dependent Ginzburg-Landau Model by FEM with Moving Grid Deformation, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 409, Fakultät für Mathematik, TU Dortmund, 409, 2010 [PDF]
- Turek, S.; Mierka, O.; Hysing, S.; Kuzmin, D.: A high order 3D FEM-Level Set approach for multiphase flow with application to monodisperse droplet generation, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 411, Fakultät für Mathematik, TU Dortmund, 411, 2010 [PDF]
- Hysing, S.: Mixed finite element level set method for numerical simulation of immiscible fluids, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 425, Fakultät für Mathematik, TU Dortmund, 425, 2011 [PDF]
- Hysing, S.: Evaluation of CFD codes on a two-phase flow benchmark reference test case, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 427, Fakultät für Mathematik, TU Dortmund, 427, 2011 [PDF]
- Turek, S.; Mierka, O.; Hysing, S.; Kuzmin, D.: Numerical study of a high order 3D FEM-Level Set approach for immiscible flow simulation, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 437, Fakultät für Mathematik, TU Dortmund, 437, 2011 [PDF]
- Turek, S.; Mierka, O.; Hysing, S.; Kuzmin, D.: Numerical study of a high order 3D FEM-Level Set approach for immiscible flow simulation, Repin, S., Tiihonen, T., Tuovinen, T., Computational Methods in Applied Sciences, Vol. 27, 65-91, Numerical methods for differential equations, optimization, and technological problems, Springer, ISBN 978-94-007-5287-0, 2013
- Hysing, S.; Turek, S.: Evaluation of commercial and academic CFD codes for a two-phase flow benchmark test case, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 449, Fakultät für Mathematik, TU Dortmund, 449, 2012 [PDF]
Efficient numerical techniques for non-isothermal, highly viscous multiphase flow for the processing of graded plastics
- Runtime
- 4 years; 4 years (ongoing)
- Project leader
- Stefan Turek
- Sponsorship
- DFG
- External partners
- Prof. Dr. Andreas Meister (Universität Kassel), Prof. Dr.-Ing. Olaf Wünsch (Universität Kassel)
- Project members
- Abderrahim Ouazzi
- Hogenrich Damanik
- Homepage
- http://www.transregio-30.com
- Förderkennzeichen (Founding ID)
- DFG (Teilprojekt C3 innerhalb des SFB/Transregio TRR 30 "Prozessintegrierte Herstellung funktional gradierter Strukturen auf der Grundlage thermo-mechanisch gekoppelter Phänomene")
- Description
- The aim of this project is the development, analysis and realization of efficient numerical techniques for incompressible non-isothermal fluids. The corresponding application is in the field of processing of viscoelastic polymer material which takes into account the multi-scale behaviour due to steep temperature gradients and high Weissenberg numbers, two-phase phenomena due to the free surface between fluid and air and which includes resulting geometrical changes in space and time. The modelling aspects will be treated together with TP B1 while the validation of the FEATFLOW modules and the application to realistic processes is performed together with TP A5 and TP A8.
- Publications
- -, .: Flyer of the CRC conference 2012, Projektberichte Nummer 2, Lehrstuhl III, Fakultät für Mathematik, TU Dortmund, 2, 2012 [PDF]
- -, .: Flyer Summerschool 2012, Projektberichte Nummer , Lehrstuhl III, Fakultät für Mathematik, TU Dortmund, 2012 [PDF]
- Turek, S.; Ouazzi, A.: Unified edge-oriented stabilization of nonconforming FEM for incompressible flow problems: Numerical investigations, J. Num. Math., 15, 4, 299-322, 2007
- Münster, R.: Effiziente dynamische Suchdatenstrukturen zur Distanzberechnung in numerischen Strömungssimulationen, 2007
- Galdi, G.; Rannacher, R.; Robertson, A.; Turek, S.: Hemodynamical flows modelling, analysis and simulation, OWS-Oberwolfach Seminars, Birkhäuser, 978-3-7643-7805-9, 2008
- Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.: A monolithic FEM approach for non-isothermal incompressible viscous flows, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 359, Fakultät für Mathematik, TU Dortmund, 359, 2008 [PDF]
- Finn, R.; Ouazzi, A.; Turek, S.: Maximum principle and gradient estimates for stationary solutions of the Navier--Stokes equations; a partly experimental investigation, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 369, Fakultät für Mathematik, TU Dortmund, 369, 2008 [PDF]
- Turek, S.; Hron, J.: Numerical techniques for multiphase flow with liquid-solid interaction, Galdi, G., Rannacher, R., Robertson, A., Turek, S., Oberwolfach Seminars, 37, 379-501, Hemodynamical Flow Modeling, Analysis and Simulation, Birkhäuser, 2008
- Turek, S.; Ouazzi, A.; Hron, J.: On pressure separation algorithms (PSEPA) for improving the accuracy of incompressible flow simulations, Int. J. Num. Meth. Fluids, 59, 4, 387-403, 2008
- Ouazzi, A.; Turek, S.; Hron, J.; Damanik, H.: Numerical techniques for FEM simulations of continuum models in biomathematics, Marrakesh, January, 3-8, 2008, 2008 [PDF]
- Kopecz, S.; Meister, A.; Ouazzi, A.; Turek, S.; Wuensch, O.: Efficient computation of non-isothermal highly viscous incompressible flow, 10845-10846, Proceedings in Applied Mathematics and Mechanics (PAMM 08), ACM Press, DOI: 10.1002/pamm.200810845 , 2008
- Razzaq, M.; Turek, S.; Hron, J.: Numerical simulation of laminar incompressible fluid-structure interaction with application to aneurysm hemodynamics, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 385, Fakultät für Mathematik, TU Dortmund, 385, 2009 [PDF]
- Kheiripour Langroudi, M.; Turek, S.; Ouazzi, A.; Tardos, G.: An investigation of frictional and collosional powder flows using unified constitutive equation, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 387, Fakultät für Mathematik, TU Dortmund, 387, 2009 [PDF]
- Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.: A monolithic FEM-multigrid solver for non-isothermal incompressible flow on general meshes, Journal of Computational Physics, 228, 3869-3881, 2009
- Damanik, H.; Razzaq, M.; Ouazzi, A.; Turek, S.: FEM multigrid techniques for the simulation of fluid-structure interaction with application to hemodynamics, May 18-22, 2009, Agadir, 2009 [PDF]
- Razzaq, M.; Turek, S.; Hron, J.; Acker, J.: Numerical simulation and benchmarking of fluid-structure interaction with application to hemodynamics, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 393, Fakultät für Mathematik, TU Dortmund, 393, with support by F. Weichert, I. Q. Grunwald, C. Roth, M. Wagner, B. F. Romeike, 2009 [PDF]
- Ouazzi, A.; Damanik, H.; Turek, S.; Hron, J.: Monolithic FEM multigrid techniques for the simulation of viscoelastic flow, 2009 [PDF]
- Hron, J.; Pustejovska, P.; Madlik, M.; Turek, S.; Ouazzi, A.; Damanik, H.; Razzaq, M.: Monolithic FEM techniques for flows with temperature, pressure and/or shear-dependent viscosity, 2009 [PDF]
- Kheiripour Langroudi, M.; Turek, S.; Ouazzi, A.; Tardos, G.: An investigation of frictional and collisional powder flows using a unified constitutive equation, Powder Technology, 197, 1-2, 91-101, 2009
- Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.: Finite element discretization and Newton-multigrid solution techniques for the log-conformation reformulation (LCR) of viscoelastic flow problems, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 396, Fakultät für Mathematik, TU Dortmund, 396, 2009 [PDF]
- Ribbrock, D.: Entwurf einer Softwarebibliothek zur Entwicklung portabler, hardwareorientierter HPC Anwendungen am Beispiel von Strömungssimulationen mit der Lattice Boltzmann Methode, 2009
- Geveler, M.: Echtzeitfähige Interaktion von Festkörpern mit 2D Lattice-Boltzmann Flachwasserströmungen in 3D Virtual-Reality Anwendungen, 2009
- Damanik, H.; Ouazzi, A.; Hron, J.; Turek, S.: A monolithic FEM approach for temperature and shear dependent viscosity in viscoelastic flow, Ambrosio, ., 7th EUROMECH Solid Mechanics Conference, ACM Press, 2009
- Ouazzi, A.; Damanik, H.; Hron, J.; Turek, S.: FEM techniques for the LCR reformulation of viscoelastic flow problems, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 399, Fakultät für Mathematik, TU Dortmund, 399, 2009 [PDF]
- Hübner, T.; Turek, S.: Efficient monolithic simulation techniques for the stationary Lattice Boltzmann equation on general meshes, Computing and Visualization in Science, 13, 129-143, 2010
- Turek, S.; Hron, J.; Madlik, M.; Razzaq, M.; Wobker, H.; Acker, J.: Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with application to hemodynamics, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 403, Fakultät für Mathematik, TU Dortmund, 403, 2010 [PDF]
- Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.: A monolithic FEM approach for the log-conformation reformulation (LCR) of viscoelastic flow problems, J. Non-Newtonian Fluid Mech., 19-20, 165, 1105-1113, doi:10.1016/j.jnnfm2010.05.008, 2010
- Ouazzi, A.; Damanik, H.; Hron, J.; Turek, S.: FEM Techniques for the LCR Reformulation of Viscoelastic Flow Problems, Enumath , Part+2, 747-754, Numerical Mathematics and Advanced Applications 2009 2010, Springer, 2010
- Finn, R.; Ouazzi, A.; Turek, S.: Maximum principle and gradient estimates for stationary solutions of the Navier--Stokes equations; a partly experimental investigation, Rannacher, R., Sequeira, A., Advances in Mathematical Fluid Mechanics-Dedicated to Giovanni Paolo Galdi on the Occasion of his 60th Birthday, Springer, doi: 10.1007/978-3-642-04068-9, 2010
- Turek, S.; Hron, J.; Madlik, M.; Razzaq, M.; Wobker, H.; Acker, J.: Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with application to hemodynamics, Bungartz, H., Mehl, M., Schäfer, M., Lecture Notes in Computational Science and Engineering, 73, 193-220, Fluid-Structure Interaction II: Modelling, Simulation, Optimisation, Springer, doi 10.1007/978-3-642-14206-2, 2010
- Razzaq, M.; Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.: FEM multigrid techniques for fluid-structure interaction with application to hemodynamics, Appl. Num. Math., 62, 1156-1170, http://dx.doi.org/10.1016/j.apnum.2010.12.010, 2011
- Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.: Monolithic Newton-multigrid solution techniques for incompressible nonlinear flow models, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 426, Fakultät für Mathematik, TU Dortmund, 426, 2011 [PDF]
- Weichert, F.; Walczak, L.; Fisseler, D.; Opfermann, T.; Razzaq, M.; Münster, R.; Turek, S.; Grunwald, I.; Roth, A.; Veith, C.; Wagner, M.: Simulation of Intra-Aneurysmal Blood Flow by using Different Numerical Methods, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 436, Fakultät für Mathematik, TU Dortmund, 436, 2011 [PDF]
- Weichert, F.; Walczak, L.; Fisseler, D.; Opfermann, T.; Razzaq, M.; Münster, R.; Turek, S.; Grunwald, I.; Roth, C.; Veith, C.; Wagner, M.: Simulation of Intra-Aneurysmal Blood Flow by using Different Numerical Methods, CMMM, Volume 2013, Article+ID+527654, http://dx.doi.org/10.1155/2013/527654, 2011
- Damanik, H.; Ouazzi, A.; Turek, S.: Numerical simulation of a rising bubble in viscoelastic fluids, Springer, Enumath 2011 - Leiceister, 2011
- Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.: Monolithic Newton-multigrid solution techniques for incompressible nonlinear flow models, Int. J. Numer. Meth. Fluids, Volume 71, Issue 2, 208-222, 2013
- Damanik, H.; Ouazzi, A.; Turek, S.: Numerical simulation of a rising bubble in viscoelastic fluids, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 445, Fakultät für Mathematik, TU Dortmund, 445, 2012 [PDF]
- Mierka, O.; Damanik, H.; Turek, S.: Numerical simulation of mondisperse droplet generation in nozzles, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 452, Fakultät für Mathematik, TU Dortmund, 452, 2012 [PDF]
- Razzaq, M.; Tsotskas, C.; Turek, S.; Hron, J.; Kipouros, T.; Savill, M.: Insight into Fluid Structure Interaction Benchmarking through Multi-Objective Optimization, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 456, Fakultät für Mathematik, TU Dortmund, 456, 2012 [PDF]
- Turek, S.; Damanik, H.; Hron, J.; Ouazzi, A.: Efficient FEM Solvers for Incompressible Nonlinear Flow Models, Heim, H., Biermann, D., Maier, H., 219-224, 1st International Conference on Thermo-Mechanically Graded Materials, Verlag Wissenschaftliche Scripten, CRC/TR TRR 30, 2012
- Razzaq, M.; Tsotskas, C.; Turek, S.; Kipouros, T.; Savill, M.; Hron, J.: Multi-Objective Optimization of a Fluid Structure Interaction Benchmarking, CMES, 90, 4, 303-337, 2013
- Razzaq, M.; Tsotskas, C.; Turek, S.; Kipouros, T.; Savill, M.; Hron, J.: Multi-Objective Optimization of a Fluid Structure Interaction Benchmarking, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 472, Fakultät für Mathematik, TU Dortmund, 472, 2013 [PDF]
- Damanik, H.; Ouazzi, A.; Turek, S.: Numerical simulation of polymer film stretching, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 485, Fakultät für Mathematik, TU Dortmund, 485, 2013 [PDF]
- Heim, H.; Ries, A.; Schöppner, V.; Wibbeke, A.; Turek, S.; Damanik, H.; Mahnken, R.; Dammann, C.; Wünsch, O.; Al-Baldawi, A.; Rohde, B.; Brückner-Foit, A.; Gausemeier, J.; Grässler, I.; Petersen, M.: Eigenverstärkte Thermoplastverbunde, Kunststoffe, 2++und+3, 35-39 und 72-78, 2014
- Ouazzi, A.; Damanik, H.; Turek, S.: Towards a monolithic multiphase flow solver via surface stress-based formulations, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 518, Fakultät für Mathematik, TU Dortmund, 518, 2015 [PDF]
Experimental investigation of the residence time in micro reactors - influence of different geometries
- Runtime
- 2 years (finished)
- Project leader
- Stefan Turek
- Sponsorship
- DFG
- External partners
- Prof. Dr. David Agar (Universität Dortmund); PD Dr. Joachim Franzke (ISAS)
- Project members
- Jens Acker
- Förderkennzeichen (Founding ID)
- DFG (NV): TU 102/23-1
- Description
- The aim of the research is the characterization of technological aspects of reactions inside microreactors. A key criterion for this is the residence time distribution, which besides the fluid dynamic description also includes non-idealities. Injective methods inside microstructures result in a disturbance of the flow through the relation of the large injection volume to the reactor and thus only moderately accurate results. As part of this research projekt a new and, for the determination of the residence time, innovative method is used. The measurement method is based on the laser-induced activation of a non-active dye dissolved in the reactor inlet. Thus a trouble-free and clearly defined release of the trace substance is guaranteed. Using this newly developed method, measurements are performed for different geometries. The experimental results are used to develop and validate mathematical tools, which realize techniques to determine the residence time distribution (``discrete'' or ``continuous'') based on CFD simulations (FEATFLOW). In particular, robust and accurate methods for unsteady advection of tracer signals on the basis of limiter techniques (TVD, shock capturing) are being used here. The numerically challenging problem of sharp concentration fronts offers the possibility to evaluate the mathematical models in regard of their efficiency in the calculation of diffusive mass transfer in microstructures for future calculations of chemical reactions.
Monolithic ALE methods and coupled multigrid solvers for fluid-structure interaction
- Runtime
- 2 years, 1 year (finished)
- Project leader
- Stefan Turek
- Sponsorship
- DFG
- Project members
- Jaroslav Hron
- Hilmar Wobker
- Förderkennzeichen (Founding ID)
- DFG (FOR 493/2-1): TU 102/11-3
- Description
- The goal in the 2nd phase of the project is the continuous development of the previous work, with improved discretization in space and time (stabilization of convection for Q_2/P_1 Stokes elements using edge-oriented FEM methods, grid adaptivity and grid deformation, modified fractional step Theta-scheme method, adaptive time step selection) and more robust and efficient solvers (Newton-type methods, local pressure Schur complement solver ('Vanka-like') with patching and as a preconditioner in Krylov-space techniques and primarily operator-splitting schemes as global pressure Schur complement methods which decouple the pressure component from the displacements and velocities) represent significant aspects. In addition, the aspect of complicated geometries and mesh deformations in ALE approaches is another main concern, which shall be treated with special grid deformation and grid transformation techniques and new meshing techniques for reference configurations.
- Publications
- Geller, S.; Krafczyk, M.; Tölke, J.; Turek, S.; Hron, J.: Benchmark computations based on Lattice Boltzmann, finite element and finite volume methods for laminar flows, Comp. Fluids, 35, 8--9, 888-897, 2006 [PDF]
- Turek, S.; Hron, J.: A monolithic FEM solver for an ALE formulation of fluid-structure interaction with configuration for numerical benchmarking, Wesseling, P., Onate, E., Periaux, J., 176, Books of Abstracts European Conference on Computational Fluid Dynamics, nn, Eccomas CFD 2006, 2006
- Hron, J.; Turek, S.: A monolithic FEM/Multigrid solver for ALE formulation of fluid structure interaction with application in biomechanics, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 311, Fakultät für Mathematik, TU Dortmund, 311, 2006 [PDF]
- Turek, S.; Hron, J.: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 312, Fakultät für Mathematik, TU Dortmund, 312, 2006 [PDF]
- Becker, C.; Buijssen, S.; Wobker, H.; Turek, S.: FEAST: Development of HPC technologies for FEM applications, Münster, G., Wolf, D., Kremer, M., NIC Series, 32, 299-306, NIC Symposium 2006, Graphische Betriebe, Forschungszentrum Jülich, 2006
- Turek, S.; Rivkind, L.; Hron, J.; Glowinski, R.: Numerical study of a modified time-stepping theta-scheme for incompressible flow simulations, J. Sci. Comput., 28, 2--3, 533-547, doi: 10.1007/s10915-006-9083-y, 2006
- Hron, J.; Turek, S.: A monolithic FEM solver for an ale formulation of fluid-structure interaction with configuration for numerical benchmarking, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 321, Fakultät für Mathematik, TU Dortmund, 321, 2006 [PDF]
- Turek, S.; Hron, J.: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow, Bungartz, H., Schäfer, M., Lecture Notes in Computational Science and Engineering, 53, 371-385, Fluid-Structure Interaction - Modelling, Simulation, Optimization, Springer, ISBN 3-540-34595-7, 2006
- Hron, J.; Turek, S.: A monolithic FEM/multigrid solver for ALE formulation of fluid structure interaction with application in biomechanics, Bungartz, H., Schäfer, M., Lecture Notes in Computational Science and Engineering, 53, 146-170, Fluid-Structure Interaction - Modelling, Simulation, Optimization, Springer, ISBN 3-540-34595-7, 2006
- Wobker, H.; Turek, S.: Numerical studies of Vanka-type smoothers in computational solid mechanics, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 342, Fakultät für Mathematik, TU Dortmund, 342, 2007 [PDF]
- Wobker, H.; Turek, S.: High Performance Computing techniques for the FEM simulation in solid mechanics, Galdi, G., Rannacher, R., Turek, S., Oberwolfach Reports, 4, 3174-3178, Mini-Workshop: Theory and Numerics of Fluid-Solid Interaction, European Mathematical Society Publishing House, 2007
- Göddeke, D.; Strzodka, R.; Mohd-Yusof, J.; McCormick, P.; Wobker, H.; Becker, C.; Turek, S.: Using GPUs to improve multigrid solver performance on a cluster, International Journal of Computational Science and Engineering, 4, 1, 36-55, doi: 10.1504/IJCSE.2008.021111, 2008
- Buijssen, S.; Wobker, H.; Göddeke, D.; Turek, S.: FEASTSolid and FEASTFlow: FEM applications exploiting FEAST`s HPC technologies, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 371, Fakultät für Mathematik, TU Dortmund, 371, 2008 [PDF]
- Buijssen, S.; Wobker, H.; Göddeke, D.; Turek, S.: FEASTSolid and FEASTFlow: FEM applications exploiting FEAST`s HPC technologies, Nagel, W., Resch, M., Transactions of the High Performance Computing Center Stuttgart (HLRS) 2008, 425-440, High Performance Computing in Science and Engineering 2008, Springer, doi: 10.1007/978-3-540-88303-6_30, 2008
- Razzaq, M.; Hron, J.; Turek, S.: Numerical simulation of laminar incompressible fluid-structure interaction for elastic material with point constraints, Rannacher, R., Sequeira, A., 451-472, Advances in Mathematical Fluid Mechanics-Dedicated to Giovanni Paolo Galdi on the Occasion of his 60th Birthday, Springer, ISBN 978-3-642-04067-2, 2008
- Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.: A monolithic FEM approach for non-isothermal incompressible viscous flows, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 359, Fakultät für Mathematik, TU Dortmund, 359, 2008 [PDF]
- Galdi, G.; Rannacher, R.; Robertson, A.; Turek, S.: Hemodynamical flows modelling, analysis and simulation, OWS-Oberwolfach Seminars, Birkhäuser, 978-3-7643-7805-9, 2008
- Göddeke, D.; Wobker, H.; Strzodka, R.; Mohd-Yusof, J.; McCormick, P.; Turek, S.: Co-processor acceleration of an unmodified parallel solid mechanics code with FEASTGPU, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 367, Fakultät für Mathematik, TU Dortmund, 367, 2008 [PDF]
- Turek, S.; Hron, J.: Numerical techniques for multiphase flow with liquid-solid interaction, Galdi, G., Rannacher, R., Robertson, A., Turek, S., Oberwolfach Seminars, 37, 379-501, Hemodynamical Flow Modeling, Analysis and Simulation, Birkhäuser, 2008
- Razzaq, M.; Hron, J.; Turek, S.: Numerical simulation of laminar incompressible fluid-structure interaction for elastic material with point constraints, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 366, Fakultät für Mathematik, TU Dortmund, 366, 2008 [PDF]
- Köster, M.; Göddeke, D.; Wobker, H.; Turek, S.: How to gain speedups of 1000 on single processors with fast FEM solvers - Benchmarking numerical and computational efficiency, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 382, Fakultät für Mathematik, TU Dortmund, 382, 2008 [PDF]
- Turek, S.; Göddeke, D.; Becker, C.; Buijssen, S.; Wobker, H.: UCHPC: Unconventional High-Performance Computing for finite element simulations, Winner of the first PRACE award; http://www.prace-project.eu/news/prace-award-presented-to-young-scientist-at-isc201908, 2008
- Razzaq, M.; Turek, S.; Hron, J.: Numerical simulation of laminar incompressible fluid-structure interaction with application to aneurysm hemodynamics, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 385, Fakultät für Mathematik, TU Dortmund, 385, 2009 [PDF]
- Razzaq, M.; Turek, S.; Hron, J.; Acker, J.; Weichert, F.; Wagner, M.; Grunwald, I.; Roth, C.; Romeike, B.: Numerical simulation of fluid-structure interaction with application to aneurysm hemodynamics, 215-230, Fluid-Structure Interaction. Theory, Numerics and Applications, Logos Verlag, Herrsching am Ammersee, 2008, 2009
- Göddeke, D.; Wobker, H.; Strzodka, R.; Mohd-Yusof, J.; McCormick, P.; Turek, S.: Co-processor acceleration of an unmodified parallel solid mechanics code with FEASTGPU, International Journal of Computational Science and Engineering, 4, 4, 254-269, DOI: 10.1504/IJCSE.2009.029162, 2009
- Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.: A monolithic FEM-multigrid solver for non-isothermal incompressible flow on general meshes, Journal of Computational Physics, 228, 3869-3881, 2009
- Hartmann, S.; Meister, A.; Schäfer, M.; Turek, S.: International Workshop on Fluid-Structure Interaction, Theory, Numerics and Applications, Kassel University Press, 978-3-89958-66-4, 2009
- Razzaq, M.; Turek, S.; Hron, J.; Acker, J.: Numerical simulation and benchmarking of fluid-structure interaction with application to hemodynamics, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 393, Fakultät für Mathematik, TU Dortmund, 393, with support by F. Weichert, I. Q. Grunwald, C. Roth, M. Wagner, B. F. Romeike, 2009 [PDF]
- Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.: Finite element discretization and Newton-multigrid solution techniques for the log-conformation reformulation (LCR) of viscoelastic flow problems, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 396, Fakultät für Mathematik, TU Dortmund, 396, 2009 [PDF]
- Damanik, H.; Ouazzi, A.; Hron, J.; Turek, S.: A monolithic FEM approach for temperature and shear dependent viscosity in viscoelastic flow, Ambrosio, ., 7th EUROMECH Solid Mechanics Conference, ACM Press, 2009
- Wobker, H.; Turek, S.: Numerical studies of Vanka-type smoothers in computational solid mechanics, Adv. Appl. Math. Mech., 1, 1, 29-55, 2009
- Turek, S.; Göddeke, D.; Becker, C.; Buijssen, S.; Wobker, H.: FEAST -- Realisation of hardware-oriented Numerics for HPC simulations with Finite Elements, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 401, Fakultät für Mathematik, TU Dortmund, 401, 2010 [PDF]
- Turek, S.; Hron, J.; Madlik, M.; Razzaq, M.; Wobker, H.; Acker, J.: Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with application to hemodynamics, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 403, Fakultät für Mathematik, TU Dortmund, 403, 2010 [PDF]
- Turek, S.; Göddeke, D.; Becker, C.; Buijssen, S.; Wobker, H.: FEAST -- Realisation of hardware-oriented Numerics for HPC simulations with Finite Elements, Concurrency and Computation: Practice and Experience, 6, 2247-2265, Special Issue Proceedings of ISC 2008. doi:10.1002/cpe.1584, 2010
- Turek, S.; Hron, J.; Razzaq, M.; Wobker, H.; Schäfer, M.: Numerical Benchmarking of Fluid-Structure Interaction: A comparison of different discretization and solution approaches, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 405, Fakultät für Mathematik, TU Dortmund, 405, 2010 [PDF]
- Turek, S.; Göddeke, D.; Buijssen, S.; Wobker, H.: Hardware-Oriented Multigrid Finite Element Solvers on GPU-Accelerated Clusters, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 406, Fakultät für Mathematik, TU Dortmund, 406, 2010 [PDF]
- Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.: A monolithic FEM approach for the log-conformation reformulation (LCR) of viscoelastic flow problems, J. Non-Newtonian Fluid Mech., 19-20, 165, 1105-1113, doi:10.1016/j.jnnfm2010.05.008, 2010
- Turek, S.; Hron, J.; Madlik, M.; Razzaq, M.; Wobker, H.; Acker, J.: Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with application to hemodynamics, Bungartz, H., Mehl, M., Schäfer, M., Lecture Notes in Computational Science and Engineering, 73, 193-220, Fluid-Structure Interaction II: Modelling, Simulation, Optimisation, Springer, doi 10.1007/978-3-642-14206-2, 2010
- Turek, S.; Hron, J.; Razzaq, M.; Schäfer, M.: Numerical Benchmarking of Fluid-Structure Interaction: A comparison of different discretization and solution approaches, Bungartz, H., Mehl, M., Schäfer, M., Lecture Notes in Computational Science and Engineering, 73, 413-424, Fluid-Structure Interaction II: Modelling, Simulation, Optimisation, Springer, doi 10.1007/978-3-642-14206-2, 2010
- Razzaq, M.; Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.: FEM multigrid techniques for fluid-structure interaction with application to hemodynamics, Appl. Num. Math., 62, 1156-1170, http://dx.doi.org/10.1016/j.apnum.2010.12.010, 2011
- Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.: Monolithic Newton-multigrid solution techniques for incompressible nonlinear flow models, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 426, Fakultät für Mathematik, TU Dortmund, 426, 2011 [PDF]
- Weichert, F.; Walczak, L.; Fisseler, D.; Opfermann, T.; Razzaq, M.; Münster, R.; Turek, S.; Grunwald, I.; Roth, A.; Veith, C.; Wagner, M.: Simulation of Intra-Aneurysmal Blood Flow by using Different Numerical Methods, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 436, Fakultät für Mathematik, TU Dortmund, 436, 2011 [PDF]
- Weichert, F.; Walczak, L.; Fisseler, D.; Opfermann, T.; Razzaq, M.; Münster, R.; Turek, S.; Grunwald, I.; Roth, C.; Veith, C.; Wagner, M.: Simulation of Intra-Aneurysmal Blood Flow by using Different Numerical Methods, CMMM, Volume 2013, Article+ID+527654, http://dx.doi.org/10.1155/2013/527654, 2011
- Razzaq, M.; Turek, S.; Hron, J.; Damanik, H.; Ouazzi, A.: FEM Multigrid Techniques for Fluid-Structure Interaction with Application to Hemodynamics, Appl. Num. Math., 62, 9, 1156 - 1170, 10.1016/j.apnum.2010.12.010, 2012
- Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.: Monolithic Newton-multigrid solution techniques for incompressible nonlinear flow models, Int. J. Numer. Meth. Fluids, Volume 71, Issue 2, 208-222, 2013
Fictitious boundary method for particulate multiphase flow problems
- Runtime
- 2 years (ongoing)
- Project leader
- Stefan Turek
- Sponsorship
- DFG
- Project members
- Raphael Münster
- Förderkennzeichen (Founding ID)
- DFG (NV): TU 102/43-1
- Description
- The aims related to this research project are to extend the already available FEM based techniques for problems involving multiphase liquid-liquid interfaces and to combine them with Fictitious-Boundary methods for solid particles. Main emphasis is laid on the incorporation of new Eulerian approaches for particulate flows based on the recent work of Patankar, Cottet and Blasco, which incorporate level set based techniques in order to address the interface and the resulting interfacial forces instead of explicit calculation of the forces acting on the surface of the particle. The advantages of this new method are related to the unnecessity of calculation of hydrodynamic forces on the surface of the particles and calculation of the (unknown) time-dependent positions in a coupled two-way interaction with the surrounding fluid. Moreover, thanks to this approach the very same code can be used for all types of moving interfaces (liquid/gas/solid), so that the high efficiency, accuracy and flexibility of modern level set and/or volume-of-fluid methods can be used. On the application side, the behavior of highly concentrated suspensions in a surrounding laminar flow with respect to cluster formation and the production of suspensions and emulsions together with cooperation partners in process engineering will be examined.
- Publications
- Münster, R.; Mierka, O.; Turek, S.: Finite Element-Fictitious Boundary Methods (FEM-FBM) for time-dependent multiphase flow problems - Application to Sedimentation Benchmarks, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 457, Fakultät für Mathematik, TU Dortmund, 457, 2012 [PDF]
- Qiu, T.; Lee, T.; Mark, A.; Morozov, K.; Münster, R.; Mierka, O.; Turek, S.; Leshansky, A.; Fischer, P.: Swimming by Reciprocal Motion at Low Reynolds Number, NCOMMS, online: doi http://www.nature.com/ncomms/2014/141104/ncomms6119/full/ncomms6119.html, 2014
- Mierka, O.; Theis, T.; Herken, T.; Turek, S.; Schöppner, V.; Platte, F.: Mesh Deformation Based Finite Element - Fictitious Boundary Method (FEM-FBM) for the Simulation of Twin-screw Extruders, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 509, Fakultät für Mathematik, TU Dortmund, 509, 2014 [PDF]
- Mierka, O.; Theis, T.; Herken, T.; Turek, S.; Schöppner, V.; Platte, F.: Mesh Deformation Based Finite Element - Fictitious Boundary Method (FEM-FBM) for the Simulation of Twin-screw Extruders, Comput. Meth. Appl. Mech. Eng., submitted, 2014
Development and Validation of Simulation Techniques for Deburring Microstructured Shape Memory Components by Abrasive Waterblasting
- Runtime
- 1 year (finished)
- Project leader
- Stefan Turek
- Sponsorship
- DFG
- External partners
- Prof. Dr.-Ing. Dirk Biermann (TU Dortmund)
- Project members
- Evren Bayraktar
- Förderkennzeichen (Founding ID)
- DFG (NV): TU 102/39-1
- Description
- Deburring of components is a crucial element to ensure safe usage in aerotechnics, automotive and medical engineering. This research project aims to develop and validate a model allowing the simulation of the highly dynamic processes involved in abrasive wasterblasting and to determine how accurately these phenomena can be described by the model. The model should allow the parameterization of the burr details as well as the process specific data. Such a simulation tool can be used to maximize efficiency in production and processing of work pieces, while minimizing the influence of deburring on the products. From a technological point of view this is expecially important with regard to filigree nickel titanium components used in medical engineering which are prone to the formation of burrs and have to be handled with great care during deburring. The simulation results are used to configure a robot-guided deburring machine using various abrasives. It is thus intended to extent the procedure to carefully handle filigree structures.
- Publications
- Bayraktar, E.; Özkaya, E.; Münster, R.; Biermann, D.; Turek, S.: Nozzle Design for Low-Pressure Micro Abrasive Waterjet Blasting via CFD Simulations, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 465, Fakultät für Mathematik, TU Dortmund, 465, 2013 [PDF]
- Özkaya, E.; Bayraktar, E.; Turek, S.; Biermann, D.: Abrasive medium classification and CFD simulations for low-pressure abrasive water-jet blasting, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 469, Fakultät für Mathematik, TU Dortmund, 469, 2013 [PDF]
Efficient simulation technics for robust Least-Squares FEM fluid dynamics
- Runtime
- 1,5 years (ongoing)
- Project leader
- Stefan Turek
- Sponsorship
- MERCUR
- External partners
- Prof. Dr.-Ing. habil. Jörg Schröder (Universität Duisburg-Essen), Dr.-Ing. Alexander Schwarz (Universität Duisburg-Essen)
- Project members
- Abderrahim Ouazzi
- Förderkennzeichen (Founding ID)
- Pr-2011-0017
- Description
- The aims of this research project are to deliver reliable solution techniques in the field of nonlinear fluid dynamics. In particular, new numerical simulation tools are to be developed, analyzed and provided as software, which due to the employed numerical ingredients promise better performance than existing simulation techniques. Within this project an approach following the least-squares finite elements in combination with innovative iterative solvers will be developed. Compared to conventional approaches, in this approach the essential approximation properties will be analyzed and improved, which concerns for example the conservation of mass, adaptivity, etc. The resulting discrete nonlinear systems are to be solved with specially adapted Newton-multigrid methods with respect to the choice of the finite element spaces. In order to exploit the capabilities of the designed simulation technique in the field of nonlinear fluid mechanics (i.e. in biomechanical applications or in FSI related problems) the resulting implementation will be combined and accelerated by up to date techniques of high performance computing so to support the use of parallel computers and/or unconventional architectures (GPUs).
- Publications
- Nickaeen, M.; Ouazzi, A.; Turek, S.: Newton multigrid least-squares FEM for the V-V-P formulation of the Navier-Stokes equations, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 466, Fakultät für Mathematik, TU Dortmund, 466, 2013 [PDF]
- Schwarz, A.; Nickaeen, M.; Serdas, S.; Nisters, C.; Ouazzi, A.; Schröder, J.; Turek, S.: A comparative study of mixed least-squares FEMs for the incompressible Navier-Stokes equations, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 478, Fakultät für Mathematik, TU Dortmund, 478, 2013 [PDF]
- Ouazzi, A.; Nickaeen, M.; Turek, S.; Waseem, M.: Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 486, Fakultät für Mathematik, TU Dortmund, 486, 2013 [PDF]
- Serdas, S.; Schwarz, A.; Schröder, J.; Turek, S.; Ouazzi, A.; Nickaeen, M.: Least-squares finite element methods for the Navier-Stokes equations for generalized Newtonian fluids, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 499, Fakultät für Mathematik, TU Dortmund, 499, 2014 [PDF]
Efficient FEM-discretization technique and fast solver for coupled solid-fluid problems in geotechnical production process on the basis of theory of porous media (TPM)
- Runtime
- 2 years (ongoing)
- Project leader
- Stefan Turek
- Sponsorship
- DFG
- External partners
- Prof. Wolfgang Ehlers (Universität Stuttgart), Prof. Theodoros Triantafyllidis (Universität Karlsruhe)
- Project members
- Abdulrahman Obaid
- Hilmar Wobker
- Förderkennzeichen (Founding ID)
- DFG (NV): TU 102/34-1
- Description
- As part of the proposed project, efficient numerical discretisation and solution techniques for dynamic consolidation shall be developed, analysed and implemented.
The underlying models of the theory of porous media (TPM) which require the coupling of the fluid phase with models for the grain structure and special constitutive laws (hypoplastic, elostoplastic), are to be solved with special FEM-techniques that consider the LBB stability condition as well as stabilization approaches for singular effects due to transport operators (e.g. in convective Jaumann operator as well as regarding mass convection for granules and water) and that are suitable for adaptive grid matching as well as multi-phase extensions and fluid-structure interaction.
In particular, the present mathematical expertise for the efficient numerical treatment of CFD problems shall be transferred to geotechnical production processes with fluid-saturated media.
In collaboration with partners from civil engineering, particularly Prof. Ehlers/Stuttgart (modeling, FEM-simulation) and Prof. Triantafyllidis/Karlsruhe (material models, experiments), the numerical techniques realized in the open source FEM-software FEATFLOW are to be validated and evaluated with existing software (Abaqus, Ansys) using numerical and experimental benchmarks. Key aspects on the numerical side are explicit vs. implicit approaches, Eulerian vs. Lagrangian points of view regarding the convective terms,
monolithic vs. operator-splitting approaches and application of highly-efficient discretization and solution methods and (parallel) HPC techniques, especially for dynamic 3D configurations.).
- Publications
- Turek, S.; Obaid, A.; Markert, B.: On special CFD techniques for the efficient solution of dynamic porous media problems, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 461, Fakultät für Mathematik, TU Dortmund, 461, 2012 [PDF]
- Turek, S.; Obaid, A.; Markert, B.: FAST SOLVERS AND EFFICIENT NUMERICAL CFD TECHNIQUES FOR DYNAMIC POROUS MEDIA PROBLEMS, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 470, Fakultät für Mathematik, TU Dortmund, 470, 2013 [PDF]
- Turek, S.; Obaid, A.; Markert, B.: On a fully implicit, monolithic finite element method-multigrid solution approach for dynamic porous media problems, Journal of Coupled Systems and Multiscale Dynamics, 1, 2, 224-240, doi:10.1166/jcsmd.2013.1016, 2013
- Turek, S.; Obaid, A.; Markert, B.: On a fully implicit, monolithic FEM-multigrid solution approach for dynamic porous media problems, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 483, Fakultät für Mathematik, TU Dortmund, 483, 2013 [PDF]
- Obaid, A.; Turek, S.; Heider, Y.; Markert, B.: A new monolithic Newton-multigrid-based FEM solution scheme for large strain dynamic poroelasticity problems, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 528, Fakultät für Mathematik, TU Dortmund, 528, 2015 [PDF]
- Obaid, A.; Turek, S.; Heider, Y.; Markert, B.: A new monolithic Newton-multigrid-based FEM solution scheme for large strain dynamic poroelasticity problems, International Journal for Numerical Methods in Engineering, submitted, 2015
Derivation and realization of a posteriori grid adaptation techniques for high-resolution finite element schemes with application to compressible gas flows
- Runtime
- 1 year; 2 years (finished)
- Project leader
- Dmitri Kuzmin
- Sponsorship
- DFG
- Project members
- Matthias Möller
- Nikolas Vogt
- Förderkennzeichen (Founding ID)
- DFG (NV): KU 1530/3-1; KU 1530/3-2
- Description
- The aim of this project is to further extend the high-resolution finite element schemes developed by the principal investigator for the discretization of convection-dominated transport problems as well as systems of hyperbolic conservation laws and combine them with a posteriori grid adaptation techniques. Rigorous positivity criteria have been developed based on a profound mathematical analysis. They are adopted to modify discrete operators stemming from a high-order approximation of convective terms so that the resulting solution is free of unphysical oscillations and at the same time does not suffer from excess numerical diffusion. All modifications are performed by investigating the coefficients of discrete operators. This algebraic approach is truly multidimensional and allows using fully unstructured and/or locally refined computational meshes. Moreover, it can be combined with various time-stepping schemes (explicit and implicit). This project mainly focuses on the derivation of practical criteria to steer an a posteriori grid adaptation algorithm for instationary flow computations. The adaptation algorithm will be optimized for use in combination with flux correction schemes which already provide valuable information about under-resolved grid regions. Furthermore, the existing flow solver for the compressible Euler equations needs to be extended to the compressible Navier-Stokes equations by including viscous effects. As a further extension the implementation of the standard k-ε-turbulence model is planned.
- Publications
- Kuzmin, D.; Korotov, S.: Goal-oriented a posteriori error estimates for transport problems, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 386, Fakultät für Mathematik, TU Dortmund, 386, 2009 [PDF]
- Kuzmin, D.; Möller, M.: Goal-oriented mesh adaptation for flux-limited approximations to steady hyperbolic problems, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 394, Fakultät für Mathematik, TU Dortmund, 394, 2009 [PDF]
- Strehl, R.; Sokolov, A.; Kuzmin, D.; Turek, S.: A flux-corrected finite element method for chemotaxis problems, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 395, Fakultät für Mathematik, TU Dortmund, 395, 2009 [PDF]
- Strehl, R.; Sokolov, A.; Kuzmin, D.; Turek, S.: A flux-corrected finite element method for chemotaxis problems, Computational Methods in Applied Mathematics, Vol. 10 (2010) , 2, 219-232 , 2009
- Kuzmin, D.; Möller, M.; Shadid, J.; Shashkov, M.: Failsafe flux limiting and constrained data projections for systems of conservation laws, J. Comput. Phys., submitted, 2010
- Strehl, R.; Sokolov, A.; Kuzmin, D.; Horstmann, D.; Turek, S.: A positivity-preserving finite element method for chemotaxis problems in 3D, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 417, Fakultät für Mathematik, TU Dortmund, 417, 2010 [PDF]
- Kuzmin, D.; Möller, M.; Shadid, J.; Shashkov, M.: Failsafe flux limiting and constrained data projections for systems of conservation laws, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 407, Fakultät für Mathematik, TU Dortmund, 407, 2010 [PDF]
- Kuzmin, D.: Linearity-preserving flux correction and convergence acceleration for constrained Galerkin schemes, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 421, Fakultät für Mathematik, TU Dortmund, 421, 2011 [PDF]
Nonconforming finite elements of higher order: discretisation, fast solvers and applications in computational fluid dynamics
- Runtime
- 3 years (ongoing)
- Project leader
- Stefan Turek
- Sponsorship
- DFG
- External partners
- Prof. Dr. Friedhelm Schieweck (Otto-von-Guericke-Universität Magdeburg)
- Project members
- Peter Zajac
- Shafqat Hussain
- Förderkennzeichen (Founding ID)
- DFG (NV): TU 102/35-1
- Description
- As part of this project, which will be co-developed in Madgeburg and Dortmund, finite element methods and multigrid ideas for nonconforming elements of higher order are developed, analysed and implemented in the open source software FEATFLOW. The goal is to transfer techniques for discretisation, stabilisation, adaptivity and fast solvers based on multigrid methods derived in previous work of the applicants, which have been cooperating in the field of nonconforming FEM and its application to CFD problems for more than 15 years, for both scalar problems as well as for the incompressible Navier-Stokes equations to the case of higher order. The realisation in FEATFLOW ensures the availability of a sophisticated numerical test environment and the feasibility to evaluate the numerical efficiency and the quality of these new elements in realistic 2D and 3D CFD problems.
- Publications
- Hussain, S.; Schieweck, F.; Turek, S.: Higher order Galerkin time discretizations and fast multigrid solvers for the heat equation, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 416, Fakultät für Mathematik, TU Dortmund, 416, 2010 [PDF]
- Köster, M.; Ouazzi, A.; Schieweck, F.; Turek, S.; Zajac, P.: New robust nonconforming finite elements of higher order, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 418, Fakultät für Mathematik, TU Dortmund, 418, 2011 [PDF]
- Hussain, S.; Schieweck, F.; Turek, S.: Higher order Galerkin time discretizations and fast multigrid solvers for the heat equation, J. Num. Math., 19, 1, 41-61, DOI 10.1515/ JNUM.2011.003, 2011
- Hussain, S.; Schieweck, F.; Turek, S.: A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 424, Fakultät für Mathematik, TU Dortmund, 424, 2011 [PDF]
- Hussain, S.; Schieweck, F.; Turek, S.; Zajac, P.: On a Galerkin discretization of 4th order in space and time applied to the heat equation, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 458, Fakultät für Mathematik, TU Dortmund, 458, 2012 [PDF]
- Hussain, S.; Schieweck, F.; Turek, S.: A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations, TONUMJ, 4, 35-45, 2012
- Köster, M.; Ouazzi, A.; Schieweck, F.; Turek, S.; Zajac, P.: New robust nonconforming finite elements of higher order, Appl. Num. Math., 62, 166-184, 2012
- Hussain, S.; Schieweck, F.; Turek, S.: Higher order Galerkin time discretization for nonstationary incompressible flow, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 444, Fakultät für Mathematik, TU Dortmund, 444, 2012 [PDF]
- Hussain, S.; Schieweck, F.; Turek, S.: Higher order Galerkin time discretization for nonstationary incompressible flow , Numerical Mathematics and Advanced Applications, 509-517, Proceedings Enumath 2012 Leicester, Wiley-VCH, 2012
- Hussain, S.; Schieweck, F.; Turek, S.: An efficient and stable finite element solver of higher order in space and time for nonstationary incompressible flow, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 450, Fakultät für Mathematik, TU Dortmund, 450, 2012 [PDF]
- Hussain, S.; Schieweck, F.; Turek, S.: An efficient and stable finite element solver of higher order in space and time for nonstationary incompressible flow, Int. J. Numer. Meth. Fluids, 73, 927-952, Doi: 10.1002/fld.3831, 2012
- Hussain, S.; Schieweck, F.; Turek, S.: Efficient Newton-multigrid solution techniques for higher order space-time Galerkin discretizations of incompressible flow, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 477, Fakultät für Mathematik, TU Dortmund, 477, 2013 [PDF]
Derivation and realization of high-resolution finite element schemes and efficient iterative solution algorithms for the numerical simulation of convection-dominated flow problems
- Runtime
- 2 years; 1 year (finished)
- Project leader
- Dmitri Kuzmin
- Sponsorship
- DFG
- Project members
- Matthias Möller
- Förderkennzeichen (Founding ID)
- DFG (NV): KU 1530/1-1; KU 1530/1-2
- Description
- This project focuses on the extension of a class of high-resolution finite element schemes
that have been developed by the primary investigator for the accurate treatment of
convection-dominated transport problems on unstructured meshes. Rigorous positivity
criteria have been developed based on a profound mathematical analysis. They are adopted
to modify discrete differential operators stemming from a high-order approximation of
convective terms so that the resulting solution is both free of unphysical oscillations
and excess numerical diffusion. The resulting scheme is easy to implement into existing
flow solvers and does not rely on heuristic parameters. The proposed algebraic approach is
truly multidimensional can be combined with many explicit as well as implicit time
stepping techniques. Moreover, it has been successfully adopted within conforming (P1 and
Q1) and non-conforming (~Q1) finite element approximations. The aim of this project is to
generalize high-resolution schemes of this type to systems of hyperbolic conservation
laws. Starting from a systematic analysis of algebraic design principles for scalar
problems the positivity criterion and the limiting techniques are generalized to systems
of equations. The resulting (non-)linear systems are solved efficiently with the aid of
strongly coupled solution algorithms as well as FMG-FAS multigrid methods.
Numerical simulation of monodisperse droplet generation in nozzles
- Runtime
- 2 years; 2 years; 2 years (ongoing)
- Project leader
- Stefan Turek
- Sponsorship
- DFG
- Project members
- Otto Mierka
- Homepage
- http://www.spp-prozess-spray.uni-bremen.de/
- Förderkennzeichen (Founding ID)
- DFG (SPP 1423): TU 102/32-1; TU 102/32-2; TU 102/32-3
- Description
- The generation of monodisperse droplets by means of liquid jet breakup is an often used method since it offers the possibilities of regulation (for example by means of the flow rate of the surrounding fluid) in order to influence the (mono-)dispersity of the resulting droplets and the length of the liquid-jet.
Besides the operation conditions the mechanism of the laminar jet breakup is also influenced by the physical properties of the present fluids (density and viscosity ratio, interfacial tension coefficient) or by the geometrical parameters of the device, which in case of materials with non-Newtonian rheological properties or in case of process modulation can dramatically contribute to the complexity of the overall process.
This research project involves the fundamental studies of the process of laminar jet breakup by means of nozzles and targets its implementation into CFD software FEATFLOW.
In addition to the investigations on the influence of the geometrical, physical and operational parameters on the process we aim to contribute to the numerical efficiency and accuracy of the individual components of the underlying method such as grid adaptation, interface capturing with VOF or Level Set Method, parallel multigrid techniques etc.
Of particular interest is the treatment of non-Newtonian suspensions (for example in case of polymers), and extension of the simulation tool for multicomponent suspensions, for example when solid particles or another liquid phase is encapsulated into the external fluid (eg, toxic drugs for chemotherapy in a biodegradable polymer) before pinching off of the droplets which are then subsequently dried into particles.
A long-term goal on the application level is the CFD based optimisation of the nozzle shapes, operation conditions and flow modulation in order to achieve tailor-made droplets for a wide range of droplet sizes.
The developed numerical methods will be in the first stage validated by means of the experimental results provided by the research group of Prof. Walzel (TU Dortmund) and later on will be used for the simulation of an exemplary drying tower containing multiple nozzles.
- Publications
- Turek, S.; Mierka, O.; Hysing, S.; Kuzmin, D.: A high order 3D FEM-Level Set approach for multiphase flow with application to monodisperse droplet generation, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 411, Fakultät für Mathematik, TU Dortmund, 411, 2010 [PDF]
- Bayraktar, E.; Mierka, O.; Turek, S.: Benchmark Computations of 3D Laminar Flow Around a Cylinder with CFX, OpenFOAM and FeatFlow, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 433, Fakultät für Mathematik, TU Dortmund, 433, 2011 [PDF]
- Turek, S.; Mierka, O.; Hysing, S.; Kuzmin, D.: Numerical study of a high order 3D FEM-Level Set approach for immiscible flow simulation, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 437, Fakultät für Mathematik, TU Dortmund, 437, 2011 [PDF]
- Turek, S.; Mierka, O.; Hysing, S.; Kuzmin, D.: Numerical study of a high order 3D FEM-Level Set approach for immiscible flow simulation, Repin, S., Tiihonen, T., Tuovinen, T., Computational Methods in Applied Sciences, Vol. 27, 65-91, Numerical methods for differential equations, optimization, and technological problems, Springer, ISBN 978-94-007-5287-0, 2013
- Bayraktar, E.; Mierka, O.; Turek, S.: Benchmark Computations of 3D Laminar Flow Around a Cylinder with CFX, OpenFOAM and FeatFlow, International Journal of Computational Science and Engineering, 7, 3, 253-266, 2012
- Mierka, O.; Damanik, H.; Turek, S.: Numerical simulation of mondisperse droplet generation in nozzles, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 452, Fakultät für Mathematik, TU Dortmund, 452, 2012 [PDF]
- Göddeke, D.; Komatitsch, D.; Geveler, M.; Ribbrock, D.; Rajovic, N.; Puzovic, N.; Ramirez, A.: Energy efficiency vs. performance of the numerical solution of PDEs: an application study on a low-power ARM-based cluster, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 462, Fakultät für Mathematik, TU Dortmund, 462, 2012 [PDF]
Hierarchical solution concepts for flow control problems
- Runtime
- 2 years; 1 year; 3 years (finished)
- Project leader
- Stefan Turek
- Sponsorship
- DFG
- External partners
- Prof. Dr. Michael Hinze (Universität Hamburg)
- Project members
- Michael Köster
- Homepage
- http://www.am.uni-erlangen.de/home/spp1253/
- Förderkennzeichen (Founding ID)
- DFG (SPP 1253): TU 102/24-1; TU 102/24-2
- Description
- Flow control problems form the core in many practical applications. Their numerical solution for (3D) time dependent flows still represents one of the main challenges in the area of modern scientific computing. The goal of the project is the development of a generally applicable hierarchical (multigrid) solution framework for flow control problems which allows their numerical solution requiring a computational effort of only a small multiple of that of the flow simulation itself, i.e. for the performance measure
effort of optimization ⁄ effort of simulation ≤ constant
should hold with a constant of moderate size. Furthermore, within the solution framework control and state constraints should be easily integrable. To achieve our goal we combine
• High performance scientific computing techniques in flow simulation,
• Discrete concepts in space and time which are tailored to the structure of
the first-order necessary optimality conditions of the underlying optimization problem (Karush-Kuhn-Tucker system, short KKT system), and
• Sophisticated optimization algorithms combined with multigrid concepts which allow to exploit the structure of the
underlying optimization problem.
Within this first application period we concentrate on methodic and algorithmic aspects which are validated at optimization problems for 2D time dependent flows with prototypical character. Upon successful completion of
the project we have available the still missing links between the three items mentioned above, i.e. fast and robust numerical solution routines for the flow equations and their corresponding adjoints are linked to discretization concepts for flow control which mimic the coupling through the KKT system of state, adjoint state, and controls, and to hierarchical optimization algorithms which also allow to cope with control and state constraints. In a second application period we then are in the position to tackle more general and more complex flow control problems in realistic applications.
- Publications
- Grajewski, M.; Köster, M.; Turek, S.: Mathematical and numerical analysis of a robust and efficient grid deformation method in the finite element context, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 365, Fakultät für Mathematik, TU Dortmund, 365, 2008 [PDF]
- Grajewski, M.; Köster, M.; Turek, S.: A new multilevel grid deformation method, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 372, Fakultät für Mathematik, TU Dortmund, 372, 2008 [PDF]
- Köster, M.; Göddeke, D.; Wobker, H.; Turek, S.: How to gain speedups of 1000 on single processors with fast FEM solvers - Benchmarking numerical and computational efficiency, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 382, Fakultät für Mathematik, TU Dortmund, 382, 2008 [PDF]
- Grajewski, M.; Köster, M.; Turek, S.: Mathematical and numerical analysis of a robust and efficient grid deformation method in the finite element context, SIAM J. Sci. Comput., 31, 2, 1539-1557, 2008
- Grajewski, M.; Köster, M.; Turek, S.: A new multilevel grid deformation method, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 390, Fakultät für Mathematik, TU Dortmund, 390, 2009 [PDF]
- Grajewski, M.; Köster, M.; Turek, S.: Numerical analysis and implementational aspects of a new multilevel grid deformation method, Appl. Num. Math., 60, 8, 767-781, doi:10.1016/j.apnum.2010.03.017, 2010
- Hinze, M.; Köster, M.; Turek, S.: Space-time Newton-multigrid strategies for nonstationary distributed and boundary flow control problems, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 482, Fakultät für Mathematik, TU Dortmund, 482, 2013 [PDF]
Geometry processing for the virtual realization of manufacturing processes
- Runtime
- 4 years (ongoing)
- Project leader
- Stefan Turek
- Sponsorship
- DFG
- External partners
- Prof. Dr. Heinrich Müller (TU Dortmund)
- Project members
- Raphael Münster
- Abderrahim Ouazzi
- Tatiana Theis
- Homepage
- http://www.sfb708.tu-dortmund.de/
- Förderkennzeichen (Founding ID)
- DFG (Teilprojekt B1 innerhalb des SFB 708 ''3D-Surface Engineering für Werkzeugsysteme der Blechformteilefertigung - Erzeugung, Modellierung, Bearbeitung -'')
- Description
- The global goal is the exploitation of new fields of simulation of production technology by methods of efficient geometry processing and scientific computing. One emphasis lies on the efficient calculation of parameters concerning the coating quality in thermal spray processes, at a sufficient precision and the necessary efficiency for process optimization. The employed macroscopic modelling is based on a microscopic three-dimensional simulation of particle-substrate interaction including droplet formation and solidification. A further aim is the creation of an integrated chain of simulation as basis of a global optimization of the overall process of the SFB.
- Publications
- Ouazzi, A.; Theis, T.; Turek, S.: FEM-Simulation des Erstarrungsvorgangs von Einzeltröpfchen mittels Enthalpie Modell, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 460, Fakultät für Mathematik, TU Dortmund, 460, 2012 [PDF]
- Göddeke, D.; Komatitsch, D.; Geveler, M.; Ribbrock, D.; Rajovic, N.; Puzovic, N.; Ramirez, A.: Energy efficiency vs. performance of the numerical solution of PDEs: an application study on a low-power ARM-based cluster, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 462, Fakultät für Mathematik, TU Dortmund, 462, 2012 [PDF]
- Theis, T.; Ouazzi, A.; Mierka, O.; Turek, S.: Modeling of the Boundary Regions between a Spreading Droplet and a Rough Surface of Solid, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 480, Fakultät für Mathematik, TU Dortmund, 480, 2013 [PDF]
Lattice-Boltzmann methods for scalable multiphysics applications
- Runtime
- 3 years (finished)
- Project leader
- Stefan Turek
- Sponsorship
- BMBF
- External partners
- Prof. Dr. Ulrich Rüde (Friedrich-Alexander-Universität Erlangen-Nürnberg); Prof. Dr. Manfred Krafczyk / Dr.-Ing. Jonas Tölke (Technische Universität Carolo-Wilhelmina zu Braunschweig); Prof. Dr. Michael Resch (Universität Stuttgart); Prof. Dr. Ramin Yahyapour (ITMC TU Dortmund); IANUS Simulation GmbH
- Project members
- Thomas Hübner
- Hilmar Wobker
- Jens Acker
- Sven Buijssen
- Markus Geveler
- Michael Köster
- Rashid Mahmood
- Volker Mattick
- Miguel Rojas
- Edwin Yaqub
- Homepage
- http://www.skalb.de/index.php
- Förderkennzeichen (Founding ID)
- BMBF 01IH08003D
- Description
- The SKALB project (Lattice-Boltzmann methods for scalable multiphysics applications) aims at efficiently implementing and the development of Lattice-Boltzmann based CFD solvers for the simulation of complex multiphysics applications on petascale class computers. The project partners are scientists from the universities of Erlangen-Nuremberg, Dortmund, Stuttgart and Braunschweig, additionally IANUS Simulation GmbH is an industrial partner. SKALB is supported by numerous industrial partners from Germany and abroad.
Apart from specific issues concerning CFD solvers, SKALB also deals with interdisciplinary of petascale computing topics. As an example the following two topics are relevant in this context:
• Sustainable software structures for the efficient numerical simulation on petascale class computers.
• Development of efficient strategies of parallelization and optimization for massive parallel homogeneous and heterogeneous architectures.
SKALB is third-party funded within the BMBF initiative "HPC software for scalable parallel computers " with a budget of 1,8 Mio EUR for the years 2009 to 2011.
- Publications
- Geveler, M.; Ribbrock, D.; Göddeke, D.; Turek, S.: Lattice-Boltzmann Simulation of the Shallow-Water Equations with Fluid-Structure Interaction on Multi- and Manycore Processors, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 400, Fakultät für Mathematik, TU Dortmund, 400, 2009 [PDF]
- Hübner, T.; Turek, S.: Efficient monolithic simulation techniques for the stationary Lattice Boltzmann equation on general meshes, Computing and Visualization in Science, 13, 129-143, 2010
- Turek, S.; Göddeke, D.; Becker, C.; Buijssen, S.; Wobker, H.: FEAST -- Realisation of hardware-oriented Numerics for HPC simulations with Finite Elements, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 401, Fakultät für Mathematik, TU Dortmund, 401, 2010 [PDF]
- Göddeke, D.; Strzodka, R.: Cyclic Reduction Tridiagonal Solvers on GPUs Applied to Mixed Precision Multigrid, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 402, Fakultät für Mathematik, TU Dortmund, 402, 2010 [PDF]
- Turek, S.; Göddeke, D.; Becker, C.; Buijssen, S.; Wobker, H.: FEAST -- Realisation of hardware-oriented Numerics for HPC simulations with Finite Elements, Concurrency and Computation: Practice and Experience, 6, 2247-2265, Special Issue Proceedings of ISC 2008. doi:10.1002/cpe.1584, 2010
- Ribbrock, D.; Geveler, M.; Göddeke, D.; Turek, S.: Performance and Accuracy of Lattice-Boltzmann Kernels on Multi- and Manycore Architectures, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 404, Fakultät für Mathematik, TU Dortmund, 404, 2010 [PDF]
- Turek, S.; Göddeke, D.; Buijssen, S.; Wobker, H.: Hardware-Oriented Multigrid Finite Element Solvers on GPU-Accelerated Clusters, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 406, Fakultät für Mathematik, TU Dortmund, 406, 2010 [PDF]
- Ribbrock, D.; Geveler, M.; Göddeke, D.; Turek, S.: Performance and accuracy of Lattice-Boltzmann kernels on multi- and manycore architectures, Sloot, P., Dick van Albada, G., Dongarra, J., Procedia Computer Science, 1, 1, 239 - 247, International Conference on Computational Science (ICCS`10), Elsevier, doi: 10.1016/j.procs.2010.04.027, 2010
- Komatitsch, D.; Erlebacher, G.; Göddeke, D.; Michea, D.: High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster, J. Comput. Phys., 229, 7692-7714, DOI 10.1016/j.jcp.2010.06.024, 2010
- Geveler, M.; Ribbrock, D.; Göddeke, D.; Turek, S.: Lattice-Boltzmann Simulation of the Shallow-Water Equations with Fluid-Structure Interaction on Multi- and Manycore Processors, Keller, R., Kramer, D., Weiß, J., Lecture Notes in Computer Science, 6310, 92-104, Facing the Multicore Challenge, Springer, 2010
- Geveler, M.; Ribbrock, D.; Göddeke, D.; Zajac, P.; Turek, S.: Towards a complete FEM-based simulation toolkit on GPUS: Unstructured Grid Finite Element Geometric Multigrid solvers with strong smoothers based on Sparse Approximate Inverses, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 434, Fakultät für Mathematik, TU Dortmund, 434, 2011 [PDF]
- Geveler, M.; Ribbrock, D.; Göddeke, D.; Zajac, P.; Turek, S.: Towards a complete FEM-based simulation toolkit on GPUS: Unstructured Grid Finite Element Geometric Multigrid solvers with strong smoothers based on Sparse Approximate Inverses, Comp. Fluids, 80, 327-332, doi: 10.1016/j.compfluid.2012.01.025, 2013
- Göddeke, D.; Strzodka, R.: Cyclic Reduction Tridiagonal Solvers on GPUs Applied to Mixed Precision Multigrid, IEEE Transactions on Parallel and Distributed Systems, 22, 1, 22-32, doi: 10.1109/TPDS.2010.61, 2011
- Geveler, M.; Ribbrock, D.; Göddeke, D.; Zajac, P.; Turek, S.: Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs , Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 419, Fakultät für Mathematik, TU Dortmund, 419, 2011 [PDF]
- Geveler, M.; Ribbrock, D.; Mallach, S.; Göddeke, D.: A Simulation Suite for Lattice-Boltzmann based Real-Time CFD Applications Exploiting Multi-Level Parallelism on modern Multi- and Many-Core Architectures , Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 420, Fakultät für Mathematik, TU Dortmund, 420, 2011 [PDF]
- Geveler, M.; Ribbrock, D.; Göddeke, D.; Zajac, P.; Turek, S.: Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs, Ivànyi, P., Topping, B., 22, Second International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, Civil-Comp Press, Young Researcher Best Paper Award (doi: 10.4203/ccp.95.22), 2011
- Göddeke, D.; Komatitsch, D.; Geveler, M.; Ribbrock, D.; Rajovic, N.; Puzovic, N.; Ramirez, A.: Energy efficiency vs. performance of the numerical solution of PDEs: an application study on a low-power ARM-based cluster, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 462, Fakultät für Mathematik, TU Dortmund, 462, 2012 [PDF]
- Hübner, T.; Mahmood, R.; Turek, S.: Fully implicit nonstationary flow simulations with a monolithic off-lattice Boltzmann approach, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 451, Fakultät für Mathematik, TU Dortmund, 451, 2012 [PDF]
Modeling and numerical simulation of coating processes by thermal spray technology
- Runtime
- 4 years; 4 years (ongoing)
- Project leader
- Stefan Turek
- Matthias Möller
- Sponsorship
- DFG
- Project members
- Marcel Gurris
- Otto Mierka
- Christian Kühbacher
- Homepage
- http://www.sfb708.tu-dortmund.de/
- Förderkennzeichen (Founding ID)
- DFG (Teilprojekt B7 innerhalb des SFB 708 "3D-Surface Engineering für Werkzeugsysteme der Blechformteilefertigung - Erzeugung, Modellierung, Bearbeitung -")
- Description
- The integrated modeling and simulation of coating processes on the basis
of thermal spraying, in particular for complex geometries with free-form
surfaces, is due to the high complexity of the sub-processes and the
multiple scales involved a major challenge for material science,
mathematics and scientific computing, especially if an accurate prediction
of substrate properties is required. Especially for the resolution of the
small-scale micro-structures in space and time, which are responsible for
the macro behavior of the coating, modern methods with strong performance
from numerics, computer science and statistics in conjunction with
engineering knowledge and experimental works are required, particularly when a detailed understanding of the running mechanisms is required. The
project B7 pursues the goal to lay the groundwork for the integrated
modeling and simulation of coating processes on the basis of thermal
spraying and to develop efficient simulation tools for free-form surfaces
on the basis of the open source CFD software FEATFLOW for the SFB project.
Here, in the first phase the entire coating process is to be described by
the two sub-processes "particle-gas flow from the nozzle to the substrate"
and "droplet-substrate interaction with solidification", which together
provide the basis for a statistical micro-macro model for the layer
formation to allow simulation of the microstructure, morphology, density
and bond strength of the coating, as well as temperature and porosity, and
thus the global material properties. The main task of this sub-project as
central numerical project for thermal spraying is the investigation and
development of mathematical models and numerical simulation techniques for
the basic understanding of the coating processes within the SFB. The
concrete task and its solution is given in close cooperation with the
experimental (TP A1, A2, B3) as well as the methodological projects
(TP B1, B5, B6) for coating operations, in particular with the
experimental groups relating the modeling of the sub-processes, collection
of relevant process parameters, control and diagnostics of the coating
device and the hardening by rolling processes.
- Publications
- -, .: Fyler zum 6. Kolloquium zum SFB708, Projektberichte Nummer , Lehrstuhl III, Fakultät für Mathematik, TU Dortmund, 2013 [PDF]
- Hysing, S.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S.; Tobiska, L.: Proposal for quantitative benchmark computations of bubble dynamics, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 351, Fakultät für Mathematik, TU Dortmund, 351, 2007 [PDF]
- Tillmann, W.; Vogli, E.; Abdulgader, M.; Gurris, M.; Kuzmin, D.; Turek, S.: Particle trajectories by arc spraying with cored wires, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 363, Fakultät für Mathematik, TU Dortmund, 363, 2008 [PDF]
- Grajewski, M.; Köster, M.; Turek, S.: Mathematical and numerical analysis of a robust and efficient grid deformation method in the finite element context, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 365, Fakultät für Mathematik, TU Dortmund, 365, 2008 [PDF]
- Grajewski, M.; Köster, M.; Turek, S.: A new multilevel grid deformation method, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 372, Fakultät für Mathematik, TU Dortmund, 372, 2008 [PDF]
- Tillmann, W.; Vogli, E.; Abdulgader, M.; Gurris, M.; Kuzmin, D.; Turek, S.: Particle behaviour during arc spraying with cored wires, Journal of Thermal Spray Technology, 17, 5--6, 966-973, 2008
- Grajewski, M.; Köster, M.; Turek, S.: Mathematical and numerical analysis of a robust and efficient grid deformation method in the finite element context, SIAM J. Sci. Comput., 31, 2, 1539-1557, 2008
- Hysing, S.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S.; Tobiska, L.: Quantitative benchmark computations of two-dimensional bubble dynamics, Int. J. Num. Meth. Fluids, 60, 11, 1259-1288, doi: 10.1002/fld.1934, 2009 [PDF]
- Gurris, M.; Kuzmin, D.; Turek, S.: Finite Element Simulation of Compressible Particle-Laden Gas Flows, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 388, Fakultät für Mathematik, TU Dortmund, 388, 2009 [PDF]
- Grajewski, M.; Köster, M.; Turek, S.: A new multilevel grid deformation method, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 390, Fakultät für Mathematik, TU Dortmund, 390, 2009 [PDF]
- Gurris, M.; Kuzmin, D.; Turek, S.: Finite Element Simulation of Compressible Particle-Laden Gas Flows, J. Comp. Appl. Math., 12, 233, 3121-3129, 2009
- Grajewski, M.; Köster, M.; Turek, S.: Numerical analysis and implementational aspects of a new multilevel grid deformation method, Appl. Num. Math., 60, 8, 767-781, doi:10.1016/j.apnum.2010.03.017, 2010
- Kuzmin, D.; Möller, M.; Shadid, J.; Shashkov, M.: Failsafe flux limiting and constrained data projections for systems of conservation laws, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 407, Fakultät für Mathematik, TU Dortmund, 407, 2010 [PDF]
- Kuzmin, D.; Möller, M.; Shadid, J.; Shashkov, M.: Failsafe flux limiting and constrained data projections for systems of conservation laws, J. Comput. Phys., submitted, 2010
- Gurris, M.; Kuzmin, D.; Turek, S.: A Newton-like Finite Element Scheme for Compressible Gas Flows, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 408, Fakultät für Mathematik, TU Dortmund, 408, 2010 [PDF]
- Gurris, M.; Kuzmin, D.; Turek, S.: A Newton-like Finite Element Scheme for Compressible Gas Flows, Comp. Fluids, 46, 1, 245-251, 2010
- Cai, M.; Turek, S.: Numerical Studies of Time Dependent Ginzburg-Landau Model by FEM with Moving Grid Deformation, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 409, Fakultät für Mathematik, TU Dortmund, 409, 2010 [PDF]
- Turek, S.; Mierka, O.; Hysing, S.; Kuzmin, D.: A high order 3D FEM-Level Set approach for multiphase flow with application to monodisperse droplet generation, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 411, Fakultät für Mathematik, TU Dortmund, 411, 2010 [PDF]
- Gurris, M.; Kuzmin, D.; Turek, S.: Implicit Finite Element Schemes for the Stationary Compressible Euler Equations, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 414, Fakultät für Mathematik, TU Dortmund, 414, 2010 [PDF]
- Gurris, M.; Kuzmin, D.; Turek, S.: Implicit Finite Element Schemes for Stationary Compressible Particle-Laden Gas Flows, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 415, Fakultät für Mathematik, TU Dortmund, 415, 2010 [PDF]
- Gurris, M.; Kuzmin, D.; Turek, S.: Implicit Finite Element Schemes for the Stationary Compressible Euler Equations, Int. J. Numer. Meth. Fluids, 69, 1, 1-28, DOI; 10.1002/fld.2532, 2010
- Hysing, S.: Mixed finite element level set method for numerical simulation of immiscible fluids, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 425, Fakultät für Mathematik, TU Dortmund, 425, 2011 [PDF]
- Hysing, S.: Evaluation of CFD codes on a two-phase flow benchmark reference test case, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 427, Fakultät für Mathematik, TU Dortmund, 427, 2011 [PDF]
- Gurris, M.; Kuzmin, D.; Turek, S.: Implicit finite element schemes for stationary compressible particle-laden gas flows, J. Comp. Appl. Math., 235, 17, 5056-5077, 2011
- Bayraktar, E.; Mierka, O.; Turek, S.: Benchmark Computations of 3D Laminar Flow Around a Cylinder with CFX, OpenFOAM and FeatFlow, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 433, Fakultät für Mathematik, TU Dortmund, 433, 2011 [PDF]
- Turek, S.; Mierka, O.; Hysing, S.; Kuzmin, D.: Numerical study of a high order 3D FEM-Level Set approach for immiscible flow simulation, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 437, Fakultät für Mathematik, TU Dortmund, 437, 2011 [PDF]
- Turek, S.; Mierka, O.; Hysing, S.; Kuzmin, D.: Numerical study of a high order 3D FEM-Level Set approach for immiscible flow simulation, Repin, S., Tiihonen, T., Tuovinen, T., Computational Methods in Applied Sciences, Vol. 27, 65-91, Numerical methods for differential equations, optimization, and technological problems, Springer, ISBN 978-94-007-5287-0, 2013
- Bayraktar, E.; Mierka, O.; Turek, S.: Benchmark Computations of 3D Laminar Flow Around a Cylinder with CFX, OpenFOAM and FeatFlow, International Journal of Computational Science and Engineering, 7, 3, 253-266, 2012
- Hysing, S.; Turek, S.: Evaluation of commercial and academic CFD codes for a two-phase flow benchmark test case, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 449, Fakultät für Mathematik, TU Dortmund, 449, 2012 [PDF]
- Mierka, O.; Damanik, H.; Turek, S.: Numerical simulation of mondisperse droplet generation in nozzles, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 452, Fakultät für Mathematik, TU Dortmund, 452, 2012 [PDF]
- Kühbacher, C.; Möller, M.; Turek, S.: Ein dG-FEM-Verfahren zur Lösung der Konvektions-Diffusionsgleichung mit Hilfe von Mehrgitterverfahren, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 459, Fakultät für Mathematik, TU Dortmund, 459, 2012 [PDF]
- Möller, M.: Algebraic flux correction for nonconforming finite element discretizations of scalar transport problems, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 464, Fakultät für Mathematik, TU Dortmund, 464, 2012 [PDF]
- Möller, M.: Algebraic flux correction for nonconforming finite element discretizations of scalar transport problems, Computing, accepted, 2012
- Turek, S.; Möller, M.; Razzaq, M.; Rivkind, L.: Efficient Simulation and Optimization of Rotationally Symmetric, Converging-Diverging de Laval Nozzles for Twin Wire Arc Spraying, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 481, Fakultät für Mathematik, TU Dortmund, 481, 2013 [PDF]
- Gorb, Y.; Mierka, O.; Rivkind, L.; Kuzmin, D.: Finite element simulation of three-dimensional particulate flows using mixture models, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 484, Fakultät für Mathematik, TU Dortmund, 484, 2013 [PDF]
- Mierka, O.; Theis, T.; Herken, T.; Turek, S.; Schöppner, V.; Platte, F.: Mesh Deformation Based Finite Element - Fictitious Boundary Method (FEM-FBM) for the Simulation of Twin-screw Extruders, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 509, Fakultät für Mathematik, TU Dortmund, 509, 2014 [PDF]
- Mierka, O.; Theis, T.; Herken, T.; Turek, S.; Schöppner, V.; Platte, F.: Mesh Deformation Based Finite Element - Fictitious Boundary Method (FEM-FBM) for the Simulation of Twin-screw Extruders, Comput. Meth. Appl. Mech. Eng., submitted, 2014
- Ouazzi, A.; Damanik, H.; Turek, S.: Towards a monolithic multiphase flow solver via surface stress-based formulations, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 518, Fakultät für Mathematik, TU Dortmund, 518, 2015 [PDF]
EXA-DUNE: Flexible PDE Solvers, Numerical Methods, and Applications
- Runtime
- 3 years (ongoing)
- Project leader
- Stefan Turek
- Dominik Göddeke
- Sponsorship
- DFG
- External partners
- Prof. Dr. Peter Bastian (Universität Heidelberg); Dr. Olaf Ippisch (Universität Heidelberg); Prof. Dr. Mario Ohlberger (Universität Münster); Jun.-Prof. Dr. Christian Engwer (Universität Münster); Prof. Dr. Oleg Iliev (Fraunhofer ITWM und TU Kaiserslautern)
- Project members
- Markus Geveler
- Peter Zajac
- Homepage
- http://www.sppexa.de
- Förderkennzeichen (Founding ID)
- DFG (SPP 1648): TU 102/48-1; GO 1758/2-1
- Description
- The aim of this interdisciplinary project, bringing together experts from the open source projects DUNE and FEAST, is to develop, analyse and realise new numerical, algorithmic and computational techniques to enable exascale computing for partial differential equations (PDEs) on heterogeneous
massively parallel architectures. As the life time of PDE software is typically much longer than for hardware, flexible but nevertheless hardware-specific software components are developed based on the DUNE platform, which uses state-of-the-art programming techniques to achieve great flexibility and high efficiency to the advantage of a steadily growing user-community. Hardware-oriented numerical techniques of the FEAST project are integrated to optimally exploit the performance of the local (heterogeneous) nodes (multi-core multi-purpose CPUs, special purpose acceleration units like GPUs, etc.), w.r.t. specific structures of the given PDEs. The introduction of a hardware abstraction layer will make it possible to perform the necessary hardware-specific changes of essential components at compile time with at most minimal changes of the application code. Further adding to the great benefits from a combination of the strengths of DUNE and FEAST, modern numerical
discretisations and solver approaches like adaptive multi-grid, localised spectral methods (e.g. higher-order Discontinous Galerkin schemes) and a hybrid parallel grid will increase the scalability. The EXA-DUNE toolbox is extended from petascale towards exascale level computing by introducing multi-level Monte Carlo methods for uncertainty quantification and multi-scale techniques which both add an additional layer of coarse grained parallelism, as they require the solution of many weakly coupled problems. The new methodologies and software concepts are applied to flow and transport processes in porous media (fuel cells, CO2 sequestration, large scale water transport), which are
grand challenge problems of high relevance to society.
- Publications
- Zajac, P.: Assembling Adjacency Relations for the Finite Element Method, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 476, Fakultät für Mathematik, TU Dortmund, 476, 2013 [PDF]
- Göddeke, D.: Exascale techniques for Numerics for PDEs (Part II), Casanova, H., Robert, Y., Schwiegelshohn, U., Report from Dagstuhl Seminar 13381, 115, Algorithms and Scheduling Techniques for Exascale Systems, Dagstuhl Publishing, http://dx.doi.org/10.4230/DagRep.3.9.106, 2013
- Turek, S.: Exascale techniques for Numerics for PDEs (Part I), Casanova, H., Robert, Y., Schwiegelshohn, U., Report from Dagstuhl Seminar 13381, 126, Algorithms and Scheduling Techniques for Exascale Systems, Dagstuhl Publishing, http://dx.doi.org/10.4230/DagRep.3.9.106, 2013
- Zajac, P.: Restricted Element-Wise Projection for the Finite Element Method, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 490, Fakultät für Mathematik, TU Dortmund, 490, 2014 [PDF]
- Müthing, S.; Ribbrock, D.; Göddeke, D.: Integrating multi-threading and accelerators into DUNE-ISTL, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 492, Fakultät für Mathematik, TU Dortmund, 492, 2014 [PDF]
- Safi, A.; Turek, S.: GPGPU-based rising bubble simulations using a MRT lattice Boltzmann method coupled with level set interface capturing, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 508, Fakultät für Mathematik, TU Dortmund, 508, 2014 [PDF]
- Venetis, I.; Goumas, G.; Geveler, M.; Ribbrock, D.: Porting FEASTFLOW to the Intel Xeon Phi: Lessons Learned, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 510, Fakultät für Mathematik, TU Dortmund, 510, 2015 [PDF]
- Safi, A.; Turek, S.: Efficient computations for high density ratio rising bubble flows using a diffused interface, coupled lattice Boltzmann-level set scheme, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 513, Fakultät für Mathematik, TU Dortmund, 513, 2015 [PDF]
- Göddeke, D.; Altenbernd, M.; Ribbrock, D.: Fault-tolerant finite-element mutligrid algorithms with hierarchically compressed asynchronous checkpointing, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 522, Fakultät für Mathematik, TU Dortmund, 522, 2015 [PDF]
- Göddeke, D.; Altenbernd, M.; Ribbrock, D.: Fault-tolerant finite-element multigrid algorithms with hierarchically compressed asynchronous checkpointing, Parallel Computing, 49, 117-135, ISSN: 0167-8191; doi: http://dx.doi.org/10.1016/j.parco.2015.07.003, 2015
- Geveler, M.; Turek, S.: Fundamentals of a numerical cloud computing for applied sciences - Preparing cloud computing for ``Simulation-as-a-Service``, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 555, Fakultät für Mathematik, TU Dortmund, 555, 2017 [PDF]
Hydrodynamic theory of wet particle systems ? Modeling, simulation and validation based on microscopic and macroscopic descriptions
- Runtime
- 3 years (ongoing)
- Project leader
- Stefan Turek
- Sponsorship
- DFG/STW
- External partners
- Prof. Dr.-Ing. Rüdiger Schwarze (TU Bergakadmie Freiberg); Prof. Dr. Stefan Schwarze (Universiteit Twente, NL)
- Project members
- Abderrahim Ouazzi
- Förderkennzeichen (Founding ID)
- DFG/STW: TU 102/44-1
- Description
- The objective of the proposed research project is to develop a hydrodynamic description of the flow of wet granular materials, which is based on detailed knowledge of the links between micro-scale material parameters. The main targets of the project are
(i) the formulation of suitable constitutive equations for the stress-strain relations, specifically for wet granular materials,
(ii) the deduction of the parameters in the constitutive equations from discrete element simulations,
(iii) the validation of the micro-macro transition with data from suitable experiments with wet granular materials and
(iv) the development of new, more efficient macroscopic simulation tools to model realistic, large-scale experiments.
As the main working hypothesis, it is assumed that the constitutive stress-strain relations can be described by generalized fluid dynamics-like models, where the parameters of the constitutive model depend on local flow parameters, like e.g. density, pressure, shear rate or volume fractions of the wetting liquid and of the particulate solid phase, respectively.
- Publications
- Ouazzi, A.; Nickaeen, M.; Turek, S.; Waseem, M.: Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 486, Fakultät für Mathematik, TU Dortmund, 486, 2013 [PDF]
- Ouazzi, A.; Damanik, H.; Turek, S.: Towards a monolithic multiphase flow solver via surface stress-based formulations, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 518, Fakultät für Mathematik, TU Dortmund, 518, 2015 [PDF]
- Mandal, S.; Ouazzi, A.; Turek, S.: A modified Newton-type solver for yield stress fluids, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 532, Fakultät für Mathematik, TU Dortmund, 532, 2015 [PDF]
Asynchronous and fault-tolerant parallel multigrid methods for future HPC systems
- Runtime
- 1 Jahr (ongoing)
- Project leader
- Dominik Göddeke
- Sponsorship
- MERCUR
- Project members
- Peter Zajac
- Förderkennzeichen (Founding ID)
- An-2013-0019
- Description
- Modern computer systems are increasingly heterogeneous, parallel, dynamic and unreliable. To efficiently exploit their potential performance, the underlying numerical and algorithmic methodology has to be explicitly adapted and extended. The scope of this project is the numerical simulation of partial differential equations, in particular the combination of finite element methods with hierarchical multigrid methods. Components of this type often dominate compute times in modern, fast and accurate simulation schemes for application problems, e.g., in continuum mechanics. While in the past few years significant progress has been achieved in terms of uniform scalability, fine-granular parallelisation (GPUs) and runtime efficiency, we now tackle the even more complex challenges of fault tolerance, asynchronicity and communication avoiding: Resilience in case of partial hardware faults will be integrated directly in more robust numerical schemes, and the dramatically increasing disparity between raw floating point performance and data transfers between heterogeneous memory hierarchies mandates substantial research efforts to develop solution methods that are flexible and highly efficient simultaneously. All implementations are integrated into open-source software and are thus widely available for application codes.
- Publications
- Göddeke, D.: Exascale techniques for Numerics for PDEs (Part II), Casanova, H., Robert, Y., Schwiegelshohn, U., Report from Dagstuhl Seminar 13381, 115, Algorithms and Scheduling Techniques for Exascale Systems, Dagstuhl Publishing, http://dx.doi.org/10.4230/DagRep.3.9.106, 2013
- Göddeke, D.; Altenbernd, M.; Ribbrock, D.: Fault-tolerant finite-element mutligrid algorithms with hierarchically compressed asynchronous checkpointing, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 522, Fakultät für Mathematik, TU Dortmund, 522, 2015 [PDF]
- Göddeke, D.; Altenbernd, M.; Ribbrock, D.: Fault-tolerant finite-element multigrid algorithms with hierarchically compressed asynchronous checkpointing, Parallel Computing, 49, 117-135, ISSN: 0167-8191; doi: http://dx.doi.org/10.1016/j.parco.2015.07.003, 2015
Scalable, recursively configurable, massively-parallel FEM-multigrid solvers for heterogeneous hardware architectures - Design, analysis and realisation in FEAST with applications in fluid mechanics
- Runtime
- 3 years (ongoing)
- Project leader
- Stefan Turek
- Dominik Göddeke
- Sponsorship
- DFG
- Project members
- Förderkennzeichen (Founding ID)
- TU 102/50-1; GO 1758/3-1
- Description
- This joint project examines numerical methods for massively-parallel multigrid methods for finite element discretisations of variable order. Special emphasis is placed on techniques that enable robustness and uniform scalability on modern heterogeneous hardware architectures, in particular on hybrid systems comprising conventional CPU-like processors combined with throughput-optimised accelerator designs like graphics processors (GPUs). The goal of uniform scalability is very challenging and embraces aspects of numerical scalability (convergence rates independent of problem size and problem partitioning), the minimisation or even avoidance of sequential components on all parallelism layers of hybrid systems, the equal degree of utilisation of all compute resources, and the numerically stable and robust asynchronous and fault-tolerant parallel execution. In addition, novel numerical methods along with suitable implementation techniques are developed and analysed (hardware-oriented numerics), so that efficient -- simultaneously wrt. numerics, parallelism and hardware -- discretisation and solution techniques can be provided for a broad range of flow problems. Joint work in this research project is incorporated both in independently usable libraries as well as the common FEAST software package that has been developed intinsively during the last years, so that a numerically robust, scalable and recursively configurable methodology for massively-parallel multigrid methods on heterogeneous hardware platforms can be realised and analysed.
- Publications
- Venetis, I.; Goumas, G.; Geveler, M.; Ribbrock, D.: Porting FEASTFLOW to the Intel Xeon Phi: Lessons Learned, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 510, Fakultät für Mathematik, TU Dortmund, 510, 2015 [PDF]
- Geveler, M.; Ribbrock, D.: FFF2: Future-proof High Performance Numerical Simulation for CFD with FEASTFLOW (2), Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 512, Fakultät für Mathematik, TU Dortmund, 512, 2015 [PDF]
- Geveler, M.; Turek, S.: Fundamentals of a numerical cloud computing for applied sciences - Preparing cloud computing for ``Simulation-as-a-Service``, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 555, Fakultät für Mathematik, TU Dortmund, 555, 2017 [PDF]
- Paul, J.: Preconditioning for hyperelasticity-based mesh optimisation, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 573, Fakultät für Mathematik, TU Dortmund, 573, 2017 [PDF]
ExtremSimOpt: Modeling, Simulation and Optimisation of Fluids in Extreme Conditions
- Runtime
- 3 years (ongoing)
- Project leader
- Stefan Turek
- Sponsorship
- BMBF
- External partners
- Prof. Dr. Rolf Rannacher, Prof. Dr. Thomas Richter (Ruprecht-Karls-Universität Heidelberg); Prof. Dr. Boris Vexler, Dr. Dominik Meidner (Technische Universität München)
- Project members
- Mudassar Razzaq
- Förderkennzeichen (Founding ID)
- BMBF 05M13RDC
- Description
- The aim of the joint project of the universities Heidelberg, Dortmund and Munich is the development of efficient numerical methods for the modeling, simulation and optimisation of multiphysic processes in extreme conditions.
As a prototypical application given by the industrial partner Rockwell Collins Deutschland (RCD), the dynamics of lubricating films in high performance precision bearings is analysed which are used in the satellite technology. A second (and in terms of the underlying equations similar) application is provided by the industrial partner P+Z Engineering, focusing on thermal fluid structure interactions in heat exchangers used by the automotive industry. Results of this project will directly be used by the R/D departments of RCD and P+Z to cope with future challanges in simulation and optimisation.
The underlying equations in these problems are highly complex. On the one hand, a complicated set of strongly coupled physical equations with nonlinear material properties has to be solved. On the other hand, model parameters introduce a high stiffness, e.g. due to large differences in scale. In some situations, appropriate models are even unknown and have to be derived by parameter estimation.
The project ExtremSimopt is being funded from 2013 till 2016 in the context of the BMBF initiative "Mathematik für Innovationen in Industrie und Dienstleistungen".
- Publications
- Damanik, H.; Ouazzi, A.; Turek, S.: Numerical simulation of polymer film stretching, Ergebnisberichte des Instituts für Angewandte Mathematik Nummer 485, Fakultät für Mathematik, TU Dortmund, 485, 2013 [PDF]